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Abstract

A large class of distributed applications (e.g. the irregular applications) requires the use
of distributed data structures. A subset of these applications (e.g. the distributed actor
model, the fan-out/fan-in pattern) specifically requires distributed multi-producer
single-consumer (MPSC) queues. For a distributed MPSC queue to be useful, it must
provide high performance and fault tolerance (the notion of fault tolerance is closely
linked to the notion of non-blocking). To date, there has been little effort into designing
a performant and fault tolerant MPSC queue. In this thesis, we address this question,
aiming to provide the programmers with a general-purpose, highly performant and
fault tolerant MPSC queue. The key observation that guides us is that there are a lot
non-blocking shared-memory MPSC queues in the literature. Therefore, our method-
ology is to use a bridging model, i.e. BCL CoreX, to adapt these into the distributed
domain. We additionally make some optimizations to the resulting queues that take
into account the constraint of distributed environments. As a result, we have obtained
two fault tolerant (wait-free) MPSC queues that have good theoretical performance
characteristics: dLTQueueV2 and Slotqueue. Based on our empirical evaluation against
another blocking distributed MPSC queue (AMQueue), our queues perform better in
terms of enqueue throughput and a little worse in terms of dequeue throughput.
We believe that Slotqueue and dLTQueueV2 offer the right balance of fault tolerance
and performance and can aid the programmer in implementing certain programming
patterns.
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Chapter I Introduction

This chapter details the motivation for our research topic: “Studying and developing
non-blocking distributed MPSC queues” (Section 1.1), based on which the objectives
(Section 1.2) and scope (Section 1.3) of this study are set out. To summarize, we
then come to the formulation of the research question (Section 1.4) and the overall
contributions of the thesis are listed in Section 1.5. Related academic publications that
are relevant to this thesis are listed in Section 1.6. This chapter is ended with a brief
description of the structure of the rest of this document.

1.1 Motivation

The demand for computation power has been increasing relentlessly. Increasingly
complex computation problems arise and accordingly more computation power is
required to solve them. Much engineering effort has been put forth toward obtaining
more computation power. A popular topic in this regard is distributed computing:
The combined power of clusters of commodity hardware can surpass that of a single
powerful machine [3].

To harness the power of distributed systems, specialized algorithms and data structures
need to be devised. Two especially important properties of distributed systems are
performance and fault tolerance [4]. Therefore, the algorithms and data structures
running on distributed systems need to be highly efficient and fault tolerant. Regarding
efficiency, we are concerned with the algorithms’ throughput and latency, which are
the two main metrics to measure performance. Considering fault tolerance, we are
especially interested in the progress guarantee [5] characteristic of the algorithms. The
progress guarantee criterion divides the algorithms into two groups: blocking and non-
blocking. Blocking algorithms allow one faulty process to delay the other processes
forever, which is not fault tolerant [6]. Non-blocking algorithms are safeguarded
against this problem, exhibiting a higher degree of fault tolerance [7].

One of the algorithms that has seen applications in the distributed domain is the
multi-producer, single-consumer (MPSC) queue algorithm [1]. Furthermore, there are
applications and programming patterns in the shared-memory domain that can poten-
tially see similar usage in the distributed domain, such as the actor model [8] or the
fan-out fan-in pattern [9]. Although the more general multi-producer, multi-consumer
(MPMC) queues suffice for the MPSC workloads, they are typically too expensive for
these use cases [10, 11]. Therefore, supporting a specialized non-blocking distributed
MPSC queue is still valuable.
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However, currently in the literature, there is only one distributed MPSC queue,
AMQueue [1]. Moreover, even though the author claims that AMQueue is non-
blocking, we found that AMQueue is actually blocking (Section 3.2). This is unlike the
shared-memory domain, where there are a lot more research on non-blocking MPSC
queues [10-13]. This apparent gap between the two domains have been bridged by
some recent research to adapt non-blocking shared-memory algorithms to distributed
environments [14-17]. The work by [17] introduces a method for creating non-
blocking distributed data structures within the partitioned global address space (PGAS)
framework, particularly targeting the Chapel programming language. However, their
methodology faces a significant limitation: it relies on double-word compare-and-swap
(DCAS) or 128-bit compare-and-swap (CAS) operations to prevent ABA problems,
which lack support from most remote direct memory access (RDMA) hardware systems
[17]. The HCL framework [16] provides a distributed data structure library built on
RPC over RDMA technology. While functional, this approach demands specialized
hardware capabilities from contemporary network interface cards, limiting its porta-
bility [15]. BCL Core [14] presents a highly portable solution capable of interfacing
with multiple distributed programming backends including MPI, SHMEM, and GAS-
Net-EX. However, BCL Core’s architecture incorporates 128-bit pointers, creating the
same RDMA hardware compatibility issues as [17]. For our research, we have selected
BCL CoreX [15] and adopted its design philosophy to adapt existing shared-memory
MPSC queues for distributed computing environments. BCL CoreX [15] extends the
original BCL [14] framework with enhanced features that simplify the development
of non-blocking distributed data structures. A key innovation in their approach is
the implementation of 64-bit pointers, which are compatible with virtually all large-
scale computing clusters and supported by most RDMA hardware configurations. To
address ABA problems without relying on specialized instructions like DCAS, they
have developed a distributed hazard pointer mechanism. This generic solution provides
sufficient portability and flexibility to accommodate the adaptation of most existing
non-blocking shared-memory data structures to distributed environments.

In summary, we focus on the design of efficient non-blocking distributed MPSC queues
using the BCL CoreX library as the main implementation framework. The next few
sections will list the objectives in more details and sum them up in a research question.

1.2 Objective

Based on what we have listed out in Section 1.1, we aim to:
« Investigate the principles underpinning the design of fault-tolerant and performant
shared-memory algorithms.
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Investigate state-of-the-art shared-memory MPSC queue algorithms as case stud-
ies to support our design of distributed MPSC queue algorithms.

Investigate existing distributed MPSC algorithms to serve as a comparison base-
line.

Model and design distributed MPSC queue algorithms using techniques from the
shared-memory literature, specifically the BCL CoreX library.

Utilize the shared-memory programming model to evaluate various theoretical
aspects of distributed MPSC queue algorithms: correctness and progress guarantee.
Model the theoretical performance of distributed MPSC queue algorithms that are
designed using techniques from the shared-memory literature.

Collect empirical results on distributed MPSC queue algorithms and discuss
important factors that affect these results.

1.3 Scope

The following narrows down what we are going to investigate in the shared-memory
literature and which theoretical and empirical aspects we are interested in for our

distributed algorithms:

Regarding the investigation of the design principles in the shared-memory litera-
ture, we focus on fault-tolerant and performant concurrent algorithm design using
atomic operations and common problems that often arise in this area, namely, ABA
problem and safe memory reclamation problem.

Regarding the investigation of shared-memory MPSC queues currently in the
literature, we focus on linearizable MPSC queues that follow strict FIFO semantics
and support at least lock-free enqueue and dequeue operations.

Regarding correctness, we concern ourselves with the linearizability correctness
condition.

Regarding fault tolerance, we concern ourselves with the concept of progress
guarantee, that is, the ability of the system to continue to make forward progress
despite the failure of one or more components of the system.

Regarding algorithm prototyping, benchmarking and optimizations, we assume an
MPI-3 setting.

Regarding empirical results, we focus on performance-related metrics, e.g.
throughput and latency.

1.4 Research question

Any research effort in this thesis revolves around this research question:
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“How to utilize shared-memory programming principles to model and design distrib-
uted MPSC queue algorithms in a correct, fault-tolerant and performant manner?”

This question is further decomposed into smaller subquestions:

1. How to model the correctness of a distributed MPSC queue algorithm?

2. Which factors contribute to the fault tolerance and performance of distributed
MPSC queue algorithms?

3. Which shared-memory programming principles are relevant in modeling and
designing distributed MPSC queue algorithms in a fault-tolerant and performant
manner?

4. Which shared-memory programming principles need to be modified to more effec-
tively model and design distributed MPSC queue algorithms in a fault-tolerant and
performant manner?

1.5 Contributions

This research makes two primary contributions to the field of distributed program-
ming;:

« An application of a novel design technique for non-blocking distributed data
structures - via adaptation of non-blocking shared-memory data structures. The
thesis demonstrates the feasibility of this approach in designing new non-blocking
distributed data structures.

« Three novel wait-free distributed MPSC queues: dLTQueue, Slotqueue and
dLTQueueV2, which are all fault-tolerant. Slotqueue and dLTQueueV2 are espe-
cially optimized for performance.

In conclusion, this work establishes a foundation for future research in fault-tolerant
distributed data structures while providing immediately usable implementations for
practitioners.

1.6 Related publications

The following is a list of our academic publications that are relevant to the topic of this

thesis:

1. Huy DNA, Nguyen M-T, Diep T-D, Thoai N (2025) dLTQueue: A Non-Blocking Dis-
tributed-Memory Multi-Producer Single-Consumer Queue. In: 2025 International
Conference on Future Data and Security Engineering. To appear.

2. Huy DNA, Diep T-D, Fiirlinger K, Thoai N (2025) Slotqueue: A Wait-Free Distributed
Multi-Producer Single-Consumer Queue with Constant Remote Operations. In: 2025
The IFIP International Conference on Network and Parallel Computing. To appear.
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1.7 Structure

The rest of this report is structured as follows:

Chapter II discusses the theoretical foundation this thesis is based on. As mentioned,
this thesis investigates the principles of shared-memory programming and the existing
state-of-the-art shared-memory MPSC queues. We then explore the utilities offered
by MPI-3 and BCL CoreX to implement distributed algorithms modeled by shared-
memory programming techniques.

Chapter III surveys the shared-memory literature for state-of-the-art queue algorithms,
specifically MPSC queues. We specifically focus on non-blocking shared-memory algo-
rithms that have the potential to be adapted efficiently for distributed environments.
This chapter additionally surveys existing distributed MPSC algorithms to serve as a
comparison baseline for our novel distributed MPSC queue algorithms.

Chapter IV introduces our novel distributed MPSC queue algorithms, designed using
shared-memory programming techniques and inspired by the selected shared-memory
MPSC queue algorithms surveyed in Chapter IIL. It specifically presents our adaptation
efforts of existing algorithms in the shared-memory literature to make their distributed
implementations feasible and efficient.

Chapter V details our benchmarking metrics and elaborates on our benchmarking
setup. We aim to demonstrate results on how well our novel MPSC queue algorithms
perform, additionally compared to existing distributed MPSC queues. Finally, we
discuss important factors that affect the runtime properties of distributed MPSC queue
algorithms.

Chapter VI concludes what we have accomplished in this thesis and considers future
possible improvements to our research.
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Chapter II Background

This chapter provides the background for the terminology referenced throughout this
thesis. To motivate the discussion of MPSC queues in Section 2.2, the chapter first
discusses two irregular applications in Section 2.1. Next, it establishes what it means
for a concurrent algorithm to be correct in Section 2.3 and the progress guarantee
characteristics of concurrent algorithms in Section 2.4. From there, the decision is
to design linearizable non-blocking distributed MPSC queues. Therefore, this work
focuses on the tools needed to design non-blocking algorithms in Section 2.5 and the
issues that arise in this design process such as ABA problem and safe memory recla-
mation problem in Section 2.6. The chapter finally introduces the practical libraries
to help realize non-blocking distributed MPSC queues in Section 2.7, Section 2.8 and
Section 2.9.

2.1 Irregular applications

MPSC queues and their applications belong to the class of irregular applications.
Designing irregular applications needs to take into account their special properties.
Therefore, before we discuss MPSC queue in Section 2.2, we explain the term “irregular
application” in this section.

Irregular applications [18] are a class of programs particularly interesting in distributed
computing. They are characterized by:

« Unpredictable memory access: Before the program is actually run, we cannot know
which data it will need to access. We can only know that at run time.

+ Data-dependent control flow: The decision of what to do next (such as which data
to access next) is highly dependent on the values of the data already accessed, hence
the unpredictable memory access property because we cannot statically analyze
the program to know which data it will access. The control flow is inherently
engraved in the data, which is not known until runtime.

Irregular applications are interesting because they demand special techniques to
achieve high performance [18]. One specific challenge is that this type of application
is hard to model in traditional MPI APIs using the Send/Receive interface [19]. This is
specifically because using this interface requires a programmer to have already antic-
ipated communication within pairs of processes before runtime, which is difficult with
irregular applications. The introduction of MPI remote memory access (RMA) in MPI-2
and its improvement in MPI-3 has significantly improved MPI’s capability to express
irregular applications comfortably [20]. This will be explained further in Section 2.7.
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2.1.1 Actor model as an irregular application

Mailbox
Fy

AN

Message Message

AN

Message

Figure 1: Actor model visualization.

The actor model [8] in actuality is a type of irregular application supported by the
concurrent MPSC queue data structure.

Each actor can be a process or a compute node in the cluster, carrying out a specific
responsibility in the system. From time to time, there is a need for the actors to commu-
nicate with each other. For this purpose, the actor model offers a mailbox local to each
actor. This mailbox exhibits MPSC queue behavior: Other actors can send messages to
the mailbox to notify the owner actor and the owner actor at their leisure repeatedly
extracts messages from its mailbox. The actor model provides a simple programming
model for concurrent processing,.

The reasons why the actor model is an irregular application are straightforward to see:
« Unpredictable memory access: The cases in which one actor can anticipate which
one of the other actors can send it a message are pretty rare and application-
specific. As a general framework, in an actor model, the usual assumption is that
any number of actors can try to communicate with an actor at some arbitrary time.

By this nature, the communication pattern is unpredictable.
+ Data-dependent control flow: If an actor A sends a message to another actor B, and
when B reads this message, B decides to send another message to another actor
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C. As we can see, the control flow is highly engraved in the messages, or in other
words, the messages drive the program flow, which can only be known at runtime.

2.1.2 Fan-out/Fan-in pattern as an irregular application

Task

[

Subtask #1 ‘ Subtask #2 ‘ ‘ Subtask #3 ‘

9 Qg

Results #1 | Results #3 |

Results #2

Result
gueue
(MPSC)

Aggregation
node

Figure 2: Fan-out/Fan-in pattern visualization.

The fan-out/fan-in pattern [9] is another type of irregular application supported by the
concurrent MPSC queue data structure.

In this pattern, there is a big task that can be split into subtasks to be executed concur-
rently on some work nodes. In the execution process, each worker produces a result set,
each enqueued back to a result queue located on an aggregation node. The aggregation
node can then dequeue from this result queue to perform further processing. Clearly,
this result queue exhibits MPSC behavior.

The fan-out/fan-in pattern exhibits less irregularity than the actor model, however.
Usually, the worker nodes and the aggregation node are known in advance. The aggre-
gation node can anticipate Send calls from the worker nodes. Still, there is a degree
of irregularity that this pattern exhibits: How can the aggregation node know how
many Send calls a worker node will issue? This is highly driven by the task and the
data involved in this task, hence, we have the data-dependent control flow property.
One can still statically calculate or predict how many Send calls a worker node will
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issue. Nevertheless, this is problem-specific. Therefore, the memory access pattern is
somewhat unpredictable. Notice that if supported by a concurrent MPSC queue data
structure, the fan-out/fan-in pattern is free from this burden of organizing the right
amount of Send/Receive calls. Thus, combining with the MPSC queue, the fan-out/fan-
in pattern becomes more general and easier to program.

We have seen the role MPSC queues play in supporting irregular applications. It is
important to understand what really comprises an MPSC queue data structure.

2.2 MPSC queue

With irregular applications defined in Section 2.1, the focus can now turn to the
primary design goal of this thesis: MPSC queues.

Multi-producer, single-consumer (MPSC) queue is a specialized concurrent first-in
first-out (FIFO) data structure. A FIFO is a container data structure where items can be
inserted into or taken out of, with the constraint that the items that are inserted earlier
are taken out earlier. Hence, it is also known as the queue data structure. The process
that performs item insertion into the FIFO is called the producer and the process that
performs item deletion (and retrieval) is called the consumer.

In concurrent queues, multiple producers and consumers can run concurrently. One
class of concurrent FIFOs is the MPSC queue, where one consumer may run in parallel
with multiple producers.

The reasons we are interested in MPSC queues instead of the more general multi-pro-
ducer, multi-consumer (MPMC) queue data structures are that (1) high-performance
and high-scalability MPSC queues are much simpler to design than MPMCs while
(2) MPSC queues are powerful enough to solve certain problems, as demonstrated in
Section 2.1. The MPSC queue in actuality is an irregular application in itself:

« Unpredictable memory access: As a general data structure, the MPSC queue allows
any process to enqueue and dequeue at any time. By nature, its memory access
pattern is unpredictable.

+ Data-dependent control flow: The consumer’s behavior is entirely dependent on
whether and which data is available in the MPSC queue. The execution paths of
MPSC queues can vary, based on the queue contention i.e. some processes may
back off or retry some failed operations; this scenario often arises in lock-free data
structures.

As an implication, some irregular applications can actually “push” the “irregularity
burden” to the distributed MPSC queue, which is already designed for high perfor-
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mance and fault tolerance. This provides a comfortable level of abstraction for
programmers that need to deal with irregular applications.

2.3 Correctness condition of concurrent algorithms

During the design of MPSC queues, correctness must be carefully considered to ensure
proper functionality in distributed environments. This section examines the correct-
ness requirements that must be addressed when designing MPSC queues.

Correctness of concurrent algorithms is hard to define, regarding the semantics of
concurrent data structures like MPSC queues. One effort to formalize the correctness
of concurrent data structures is the definition of linearizability [21]. A method call
on the FIFO can be visualized as an interval spanning two points in time. The starting
point is called the invocation event and the ending point is called the response
event. Linearizability informally states that each method call should appear to take
effect instantaneously at some moment between its invocation event and response
event [5]. The moment the method call takes effect is termed the linearization point.
Specifically, suppose the following:

+ We have n concurrent method calls m;, m,, ..., m,,.
+ Each method call m, starts with the invocation event happening at timestamp s,

and ends with the response event happening at timestamp e,. We have s, < e,

foralll <7 <n.
+ Each method call m, has the linearization point happening at timestamp [;, so

that s; <[, <e,.

Then, linearizability means that if we have [; <1y, < ... <[, the effect of these n

concurrent method calls m,, mo, ..., m,, must be equivalent to calling m;, m,, ..., m,,

sequentially, one after the other in that order.
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Figure 3: Linearization points of method 1, method 2, method 3, method 4 happen at
t, <ty <ts <ty therefore, their effects will be observed in this order as if we call
method 1, method 2, method 3, method 4 sequentially.

Linearizability is widely used as a correctness condition because of (1) its composability
(if every component in the system is linearizable, the whole system is linearizable),
which promotes modularity and ease of proof (2) its compatibility with human
intuition, i.e. linearizability respects real-time order [21]. Naturally, we choose lineariz-
ability to be the only correctness condition for our algorithms.

2.4 Fault-tolerance & progress guarantee of concurrent algo-
rithms

Correct algorithms can still be prone to faults at runtime, ranging from processes expe-
riencing unexpected delays in execution to processes crashing indefinitely. Therefore,
fault tolerance is also an important criterion for distributed MPSC queues (Section 2.2),
in addition to correctness (Section 2.3). This section introduces the concept of progress
guarantees, which are closely linked with fault tolerance.

Progress guarantee [5] is a criterion that only arises in the context of concurrent
algorithms. Informally, it is the degree of hindrance one process imposes on another
process from completing its task. In the context of sequential algorithms, this is irrel-
evant because there is only ever one process. Progress guarantee has an implication
on an algorithm’s performance and fault tolerance, especially in adverse situations, as
we will explain in the following sections.
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2.4.1 Blocking algorithms

Many concurrent algorithms are based on locks to create mutual exclusion, in which
only some processes that have acquired the locks are able to act, while the others
have to wait. While lock-based algorithms are simple to read, write and verify, these
algorithms are said to be blocking: One slow process may slow down the other faster
processes, for example, if the slow process successfully acquires a lock and then the
operating system (OS) decides to suspend it to schedule another one, this means until
the process is awakened, the other processes that contend for the lock cannot continue.

Blocking is the weakest progress guarantee one algorithm can offer; it allows one
process to impose arbitrary impedance to any other processes, as shown in Figure 4.

Time Process 1 Other processes

Suspended [t TKreeees
Blocked

v

Figure 4: Blocking algorithm: When a process is suspended, it can potentially block
other processes from making further progress.

Blocking algorithms introduce many problems such as:
+ Deadlock: There is a circular lock-wait dependency among the processes, effec-
tively preventing any processes from making progress.
« Convoy effect: One long process holding the lock will block other shorter processes
contending for the lock.
« Priority inversion: A higher-priority process effectively has very low priority
because it has to wait for another low priority process.

Furthermore, if a process that holds the lock dies, this will render the whole program
unable to make any progress. This consideration holds even more weight in distributed
computing because of a lot more failure modes, such as network failures, node failures,
etc.
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Therefore, while blocking algorithms, especially those using locks, are easy to write,
they do not provide progress guarantee because deadlock or livelock can occur and
their use of mutual exclusion is unnecessarily restrictive. Fortunately, there are other
classes of algorithms which offer stronger progress guarantees.

2.4.2 Non-blocking algorithms

An algorithm is said to be non-blocking if a failure or slowdown in one process cannot
cause the failure or slowdown in another process. Lock-free and wait-free algorithms
are two especially interesting subclasses of non-blocking algorithms. Unlike blocking
algorithms, they provide stronger degrees of progress guarantees.

2.4.2.1 Lock-free algorithms

Lock-free algorithms provide the following guarantee: Even if some processes are sus-
pended, the remaining processes are ensured to make global progress and complete in
bounded time. In other words, a process cannot cause hindrance to the global progress
of the program. This property is invaluable in distributed computing; one dead or sus-
pended process will not block the whole program, providing fault tolerance. Designing
lock-free algorithms requires careful use of atomic instructions, such as Fetch-and-add
(FAA), Compare-and-swap (CAS), etc which will be explained in Section 2.5.

Time Process 1 Other processes

Suspended

NS

Completed

L

Figure 5: Lock-free algorithm: All the live processes together always finish in a finite
amount of steps.

2.4.2.2 Wait-free algorithms

Wait-freedom offers the strongest degree of progress guarantee. It mandates that no
process can cause constant hindrance to any running process. While lock-freedom
ensures that at least one of the alive processes will make progress, wait-freedom guar-
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antees that any alive process will finish in a finite number of steps. Wait-freedom can
be desirable because it prevents starvation. Lock-freedom still allows the possibility of
one process having to wait for another indefinitely, as long as some still make progress.

Time Process 1 Other processes

Suspended

YYYwyy

Completed

Y

Figure 6: Wait-free algorithm: Any live process always finishes in a finite amount of
steps.

2.5 Popular atomic instructions in designing non-blocking algo-
rithms

As discussed in Section 2.4, blocking algorithms are not fault tolerant while non-
blocking ones are, specifically lock-free and wait-free algorithms. Therefore, the design
goal can be refined to linearizable non-blocking distributed MPSC queues. Techniques
to achieve this are discussed next in this section.

In non-blocking algorithms, finer-grained synchronization primitives than simple
locks are required, which manifest themselves as atomic instructions. Therefore, it is
necessary to get familiar with the semantics of these atomic instructions and common
programming patterns associated with them.

2.5.1 Fetch-and-add (FAA)

Fetch-and-add (FAA) is a simple atomic instruction with the following semantics: It
atomically increments a value at a memory location z by a and returns the previous
value just before the increment. Informally, FAA’s effect is equivalent to the function
in Procedure 1, assuming that the function is executed atomically.
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Procedure 1: int fetch_and_add(int* x, int a)

1 old_value = *x
2 *X = *X + a

3 return old_value

Fetch-and-add can be used to create simple distributed counters.

2.5.2 Compare-and-swap (CAS)

Compare-and-swap (CAS) is probably the most popular atomic operation instruction.
The reason for its popularity is (1) CAS is a universal atomic instruction with the
consensus number of oo, which means it is the most powerful atomic instruction [22]
(2) CAS is implemented in most hardware (3) some concurrent lock-free data structures
such as MPSC queues are more easily expressed using a powerful atomic instruction
such as CAS.

The semantics of CAS is as follows. Given the instruction CAS(memory location, old
value, new value), atomically compares the value at memory location to see if it
equals old value; if so, sets the value at memory location to new value and returns
true; otherwise, leaves the value at memory location unchanged and returns false.
Informally, its effect is equivalent to the function in Procedure 2.

Procedure 2: bool compare_and_swap(int* x, int old_val, int new_val)

1 if (*x == old_val)
2 *x = new_val
3 return true

4 return false

Compare-and-swap is very powerful and consequently, pervasive in concurrent algo-
rithms and data structures.

Non-blocking concurrent algorithms often utilize CAS as follows. The steps 1-3 are

retried until success.

1. Read the current value o1d value = read(memory location).

2. Compute new value from old value by manipulating some resources associated
with old value and allocating new resources for new value.
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3. Call cAs(memory location, old value, new value). If that succeeds, the new
resources for new value remain valid because it was computed using valid resources
associated with old value, which has not been modified since the last read. Other-
wise, free up the resources we have allocated for new value because old value is
no longer there, so its associated resources are not valid.

This scheme is, however, susceptible to the ABA problem, which will be discussed in
Section 2.6.1.

2.5.3 Load-link/Store-conditional (LL/SC)

Load-link/Store-conditional is actually a pair of atomic instructions for synchroniza-
tion.

Semantically, load-link returns a value currently located at a memory location x while
store-conditional sets the memory location z to a value v if there is no other write to
x since the last load-link call, otherwise, the store-conditional call would fail.

Intuitively, LL/SC provides an easier synchronization primitive than CAS: LL/SC
ensures that a store-conditional can only succeed if there is no access to a memory
location, while CAS can still succeed in this case if the value at the memory location
does not change. Due to this property, LL/SC is not vulnerable to the ABA problem
(see Section 2.6.1). However, CAS is in fact as powerful as LL/SC, considering that they
can implement each other [22].

Practically, store-conditional can still fail even if thereis no write to the same memory

location since the last load-link call. This is called a spurious failure. For example,

consider the following generic sequence of events:

1. Thread X calls load-link on x and loads out v.

2. Thread X computes a new value v'.

3. Some exceptional event happens (discussed below). Assume that no other threads
access z during this time.

4. Thread X calls store-conditional to store v’ to x. It should succeed but fails anyway.

Exceptional events that can cause the store-conditional to fail spuriously include:

+ Cache line flushing: If the cache line that caches the memory location x is written
back to memory, logically, the memory location x has been accessed and therefore,
the store-conditional fails.

+ Context switch: If thread X is swapped out by the OS, cache lines may be invali-
dated and flushed out, which consequently leads to the first scenario.
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LL/SC even though as powerful as CAS, is not as widespread as CAS; in fact, as of
MPI-3, only CAS is supported.

2.6 Common issues when designing non-blocking algorithms

Atomic instructions represent the preferred approach for designing non-blocking
algorithms (Section 2.5). However, this approach typically encounters two significant
problems: the ABA problem (Section 2.6.1) and the safe memory reclamation problem
(Section 2.6.2). Addressing these issues is essential for completing the design process
outlined in the previous sections (Section 2.2, Section 2.3, Section 2.4, Section 2.5).

2.6.1 ABA problem

The ABA problem [23] is a notorious problem associated with the compare-and-swap
atomic instruction. Because CAS is so widely used in non-blocking algorithms, the
ABA problem almost has to always be accounted for.

As areminder, here’s how CAS is often utilized in non-blocking concurrent algorithms:

The steps 1-3 are retried until success.

1. Read the current value o1d value = read(memory location).

2. Compute new value from old value by manipulating some resources associated
with old value and allocating new resources for new value.

3. Call cAS(memory location, old value, new value). If that succeeds, the new
resources for new value remain valid because it was computed using valid resources
associated with old value, which has not been modified since the last read. Other-
wise, free up the resources we have allocated for new value because old value is
no longer there, so its associated resources are not valid.
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(d) Process X successfully performs the

(c) Another process pushes two values B pop by calling CAS(&Top, A, C). Top no

and A and sets Top to A. longer points to the top of the stack.
Figure 7: ABA problem in a linked-list stack.

As hinted, this scheme is susceptible to the notorious ABA problem. The following

scenario illustrates an example of the ABA problem:

1.
2.

Process 1 reads the current value of memory location and reads out A.

Process 1 manipulates resources associated with A, and allocates resources based on
these resources.

Process 1 suspends.

. Process 2 reads the current value of memory location and reads out A.

Process 2 CAS(memory location, A, B) so that resources associated with A are no
longer valid.

Process 3 CAS(memory location, B, A) and allocates new resources associated
with A.

Process 1 continues and CAS(memory location, A, new value) relying on the fact
that the old resources associated with A are still valid while in fact they aren’t.

The ABA problem arises fundamentally because most algorithms assume a memory

location is not accessed if its value is unchanged.

A specific case of the ABA problem is given in Figure 7.

To safeguard against the ABA problem, one must ensure that between the time a

process reads out a value from a shared memory location and the time it calls CAS on
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that location, there is no possibility another process has CAS-ed the memory location
to the same value.

A simple scheme that is widely used practically and also in this thesis is the unique
timestamp scheme. This scheme’s idea is simple: for each shared memory location
that is affected by CAS operations, we reserve some bits of this memory location
for a monotonic counter. Each time a CAS operation is carried out, this counter is
incremented. Theoretically, the ABA problem would never happen because combining
with this counter, the value of this memory location is always unique, due to the
counter never repeating itself. However, practically, the counter can overflow and wrap
around to the same value and the ABA problem would happen in this case. Therefore,
the counter’s range must be big enough so that this scenario can’t virtually happen.
Empirically, a counter of 32-bit should be enough. The drawback of this approach is
that we have wasted 32 meaningful bits to avoid the ABA problem.

2.6.2 Safe memory reclamation problem

The problem of safe memory reclamation [24] often arises in concurrent algorithms
that dynamically allocate memory. In such algorithms, dynamically-allocated memory
must be freed at some point. However, there is a good chance that while a process
is freeing memory, other processes contending for the same memory are keeping a
reference to that memory. Therefore, deallocated memory can potentially be accessed,
which is erroneous.

An example of unsafe memory reclamation is given in Figure 8.

Top ——» 0 1 (free)

Top —————* 1

h 4
L=]

(b) The top node is popped, the reference
(a) Process X about to push a value onto X holds is no longer valid. When X re-
the stack, already reading the top pointer sumes, a freed memory location will be
but suspended. accessed.
Figure 8: Unsafe memory reclamation in a LIFO stack.

Solutions to this problem must ensure that memory is only freed when no other
processes are holding references to it. In garbage-collected programming environ-
ments, this problem can be conveniently pushed to the garbage collector. In non-
garbage-collected programming environments, however, custom schemes must be
utilized.
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2.7 MPI-3 - A popular distributed programming library interface
specification

For implementing linearizable non-blocking distributed MPSC queues, MPI represents
the most fundamental implementation choice and serves as the focus of this section.
The discussion specifically examines the MPI-3 RMA API, which, as will be demon-
strated, facilitates straightforward implementation of irregular applications such as
MPSC queues. A pure MPI-3 RMA approach is detailed in Section 2.8, while more
advanced implementation techniques are explored in Section 2.9.

MPI stands for message passing interface, which is a message-passing library inter-
face specification. Design goals of MPI include high availability across platforms,
efficient communication, thread safety, reliable and convenient communication inter-
face while still allowing hardware-specific accelerated mechanisms to be exploited [2].

2.7.1 MPI-3 RMA

RMA in MPI RMA stands for remote memory access. RMA APIs were introduced in
MPI-2 and their capabilities are further extended in MPI-3 to conveniently express
irregular applications [20]. In general, RMA is intended to support applications with
dynamically changing data access patterns where the data distribution is fixed or
slowly changing [2]. This is very similar to the properties of irregular applications
as discussed in Section 2.1. In such applications, one process, based on the data it
needs, knowing the data distribution, can compute the nodes where the data is stored.
However, because the data access pattern is not known, each process cannot know
whether any other processes will access its data. Using the traditional Send/Receive
interface, both sides need to issue matching operations by distributing appropriate
transfer parameters. This is not suitable, as previously explained; only the side that
needs to access the data knows all the transfer parameters while the side that stores
the data cannot anticipate this.

2.7.2 MPI-RMA communication operations

RMA only requires one side to specify all the transfer parameters and thus only that
side to participate in data communication [2].

To utilize MPI RMA, each process needs to open a memory window to expose
a segment of its memory to RMA communication operations such as remote
writes (MPI_PUT), remote reads (MPI_GET) or remote accumulates (MPI_ACCUMULATE,
MPI_GET_ACCUMULATE, MPI_FETCH_AND_OP, MPI_COMPARE_AND_SWAP) [2]. These remote
communication operations only require one side to specify.
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2.7.3 MPI-RMA synchronization

Besides communication of data from the sender to the receiver, one also needs to
synchronize the sender with the receiver. That is, there must be a mechanism to ensure
the completion of RMA communication calls or that any remote operations have
taken effect. For this purpose, MPI RMA provides active target synchronization and
passive target synchronization. In this document, we are particularly interested in
passive target synchronization as this mode of synchronization does not require
the target process of an RMA operation to explicitly issue a matching synchronization
call with the origin process, easing the expression of irregular applications [20].

In passive target synchronization, any RMA communication calls must be within
a pair of MPI_win_lock/MPI_Win_unlock or MPI_Win_lock_all/MPI_Win_unlock_all.
After the unlock call, those RMA communication calls are guaranteed to have
taken effect. One can also force the completion of those RMA communication calls
without the need for the call to unlock using flush calls such as MPI_win_flush or
MPI_Win_flush_local.
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Figure 9: An illustration of passive target communication. Dashed arrows represent
synchronization (source: [2]).
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2.8 Pure MPI - A porting approach of shared memory algorithms
to distributed algorithms

With MPI (Section 2.7), the most basic facility to adapt shared-memory algorithms to
distributed algorithms is MPI-3 RMA. However, MPI-3 RMA offers a wide range of util-
ities, which may not be well-suited for implementing non-blocking distributed MPSC
queues. This section introduces one technique utilizing MPI-3 RMA to implement non-
blocking distributed algorithms. The BCL CoreX library (Section 2.9) is built on top of
this approach.

In pure MPI, we use MPI exclusively for communication and synchronization. With
MPI RMA, the communication calls that we utilize are [2]:

« Remote read: MPI_Get

« Remote write: MPI_Put

« Remote accumulation: MPI_Accumulate, MPI_Get_accumulate, MPI_Fetch_and_op

and MPI_Compare_and_swap.

For lock-free synchronization, we choose to use passive target synchronization with
MPI_Win_lock_all/MPI_Win_unlock_all.

In the MPI-3 specification [2], these functions are specified as in Table 1.

Operation Usage
MPI_Win_lock_all | Starts an RMA access epoch to all processes in a memory
window, with a lock type of MPI_LOCK_SHARED. The calling
process can access the window memory on all processes in
the memory window using RMA operations. This routine is

not collective.

MPI_Win_unlock_all [ Matches with an MPI_win_lock_all to unlock a window
previously locked by that MPI_win_lock_all.

Table 1: Specification of MPI_win_lock_all and MPI_Win_unlock_all.

The reason we choose this is 3-fold:

« Unlike active target synchronization, passive target synchronization does
not require the process whose memory is being accessed by an MPI RMA commu-
nication call to participate. This is in line with our intention to use MPI RMA to
easily model irregular applications like MPSC queues.

« Unlike  active  target synchronization, MPI_win_lock_all and
MPI_Win_unlock_all do not need to wait for a matching synchronization call in
the target process, and thus, are not delayed by the target process.
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+ Unlike passive target synchronization with MPI_Win_lock/MPI_Win_unlock,
multiple calls of MPI_Win_lock_all can succeed concurrently, so one process
needing to issue MPI RMA communication calls does not block others.

An example of our pure MPI approach with MPI_win_lock_all/MPI_Win_unlock_all,
inspired by [20], is illustrated in the following:

MPI_Win_lock_all(®, win);

MPI_Get(...); // Remote get

MPI_Put(...); // Remote put

MPI_Accumulate(..., MPI_REPLACE, ...); // Atomic put
MPI_Get_accumulate(..., MPI_NO_OP, ...); // Atomic get
MPI_Fetch_and_op(...); // Remote fetch-and-op
MPI_Compare_and_swap(...); // Remote compare and swap

MPI_Win_flush(...); // Make previous RMA operations take effect
MPI_Win_flush_local(...); // Make previous RMA operations take effect
locally

MPI_Win_unlock_all(win);

Listing 3: An example snippet showcasing our synchronization approach in MPI RMA.
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Figure 10: An illustration of our synchronization approach in MPI RMA.

2.9 BCL CoreX

BCL CoreX [15] is a high-level library built on top of MPI to facilitate the design of
non-blocking algorithms for distributed-memory machines. In principle, it utilizes the
pure MPI approach that we have covered in Section 2.8.

A subset of the primitives provided by BCL CoreX is presented below. We will utilize
these primitives in our algorithm specification.

gptr<T>
A global pointer that points to a variable of type T. A global pointer is one that can
point to a variable outside of the current process’s address space. The process whose
address space a global pointer points to is called the host. Like normal pointers,
pointer arithmetic also works with global pointers, which allows global pointers to
point to remote arrays.

T read(gptr<T> ptr, T* dest)

Capstone Project Report - Semester 243 (2024 - 2025) Page 38/113



a HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

Issue a synchronous read on the location pointed to by ptr and stores the read value
in dest.

T write(gptr<T> ptr, T* src)

Issue a synchronous write on the location pointed to by ptr that writes the value
stored in src.

T faa(gptr<T> ptr, T inc)
Issue a synchronous fetch-and-add operation on the location pointed to by ptr.

T must be an integral type of less than 64 bits.

T cas(gptr<T> ptr, T old_val, T new_val)
Issue a synchronous compare-and-swap operation on the location pointed to by ptr.

T must be a type of less than 64 bits.

A remote operation occurs when one of the primitive operations is applied on the
global pointer that points to a non-local address space. Otherwise, a local operation
occurs. Typically, remote operations are very expensive compared to local operations.
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Chapter III Related works

Given the decision to adapt shared-memory data structures for creating non-blocking
distributed MPSC queues with BCL CoreX (Section 2.9), the next step is to explore
existing non-blocking shared-memory MPSC queues in Section 3.1. Additionally, cur-
rent distributed MPSC queue implementations are analyzed in Section 3.2 to establish
benchmarking baselines. Based on this analysis, LTQueue is selected as the candidate
shared-memory MPSC queue for distributed adaptation and AMQueue is chosen as the
primary benchmark reference.

3.1 Non-blocking shared-memory MPSC queues

There exists numerous research into the design of non-blocking shared memory
MPSCs. Interestingly, research into non-blocking MPSC queues is noticeably scarce. In
reality, we have only found 4 papers that are concerned with the direct support of non-
blocking MPSC queues: LTQueue [12], DQueue [11], WRLQueue [10], and Jiffy [13].
Table 2 summarizes the characteristics of these algorithms.

MPSC queues LTQueue DQueue [11] | WRLQueue Jiffy [13]
[12] [10]
ABA solution Load-link/ | Incorrect cus- Custom Custom
Store-condi- [tom scheme scheme scheme
tional @)
Safe memory recla-| Custom Incorrect cus-|  Custom Insufficient
mation scheme tom scheme scheme custom
() scheme
Progress guarantee of | Wait-free Wait-free Blocking (%) Wait-free
dequeue
Progress guarantee of | Wait-free Wait-free Wait-free Wait-free
enqueue

Table 2: Summary of existing shared memory MPSC queues. The cell marked with (*)
indicates that our evaluation contradicts with the authors’ claims.

3.1.1 LTQueue

To our knowledge, LTQueue [12] is the earliest paper that directly focuses on the design
of a wait-free shared memory MPSC queue.
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This algorithm is wait-free with O(logn) time complexity for both enqueues and
dequeues, with n being the number of enqueuers due to a novel timestamp-update
scheme and a tree-structure organization of timestamps.

The basic structure of LTQueue is given in Figure 11. In LTQueue, each enqueuer
maintains an SPSC queue that only it and the dequeuer can access. This SPSC queue
must additionally support the readFront operation, which returns the front element
currently in the SPSC. The SPSC can be any implementation that conforms to this
interface. In the original paper, the SPSC is represented as a simple linked list.

The rectangular nodes at the bottom in Figure 11 represent an enqueuer, whose SPSC
contains items with 2 fields: value and timestamp. Every enqueuer has to timestamp
its data before enqueueing. The timestamps can be obtained using a distributed counter
shared by all the enqueuers.

The purpose of timestamping is to determine the order to dequeue the items from
the local SPSCs. To efficiently maintain the timestamps and determine which SPSC to
dequeue from first, a tree structure with a min-heap property is built upon the enqueuer
nodes. The original algorithm leaves the exact representation of the tree open, for
example, the arity of the tree, which is shown to be 2 in Figure 11. The circle-shaped
nodes in this figure represent the nodes in this tree structure, which are shared by all
processes. Each node stores the minimum timestamp along with the owner enqueuer’s
rank (an identifier given to a process) in the subtree rooted at that node. After every
modification to the local SPSC, i.e., an enqueue or a dequeue, the changes must be
propagated up to the root node.
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Figure 11: LTQueue’s structure.

To dequeue, the dequeuer simply looks at the root node to determine the rank of the
enqueuer to dequeue its SPSC.

The fundamental idea contributing to LTQueue’s wait-freedom is the wait-free
timestamp-propagation procedure. If there is a change to an enqueuer’s SPSC, the
timestamp of any nodes that lie on the path from the enqueuer to the root node is
refreshed. The timestamp-refreshing procedure is simple:
« Call load-link on the node’s (timestamp, rank).
« Look at all the timestamps of the node’s children and determine the minimum
timestamp and its owner rank.
+ Call store-conditional to store the new minimum timestamp and the new owner
rank to the current node.

Notice that due to contention, the timestamp-refreshing procedure can fail. In that
case, the timestamp-propagation procedure simply retries the timestamp-refreshing
procedure one more time. This second call, again, can fail. However, after this second
call, the node’s timestamp is guaranteed to be up-to-date. The intuition behind this
is demonstrated in Figure 12. Furthermore, because every node is refreshed at most
twice, the timestamp-refresh procedure should finish in a finite number of steps.
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Figure 12: Intuition on how timestamp-refreshing works.

The LTQueue algorithm avoids ABA entirely by utilizing load-link/store-conditional.
This represents a challenge to directly implementing this algorithm in a distributed
environment.

The memory reclamation responsibility is handled by the SPSC structure, which is
fairly trivial with a custom scheme.

The design of each enqueuer maintaining a separate SPSC allows multiple enqueuers
to successfully enqueue their data in parallel without stepping on each other’s toes.
This can potentially scale well to a large number of processes. However, scalability may
be limited due to potentially growing contention during timestamp propagation. The
performance of LTQueue in shared-memory environments may still have a lot of room
for improvement, i.e., more cache-aware design, avoiding unnecessary contention, etc.
Nevertheless, its timestamp-refreshing scheme is interesting in and of itself and can
potentially inspire the design of new algorithms. In fact, LTQueue’s idea is core to one
of our optimized distributed MPSC queue algorithms, Slotqueue (Section 4.3).

3.1.2 DQueue

DQueue [11] focuses on optimizing performance, aiming to be cache-friendly and
avoid expensive atomic instructions such as CAS.

The basic structure of DQueue is demonstrated in Figure 13.
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Figure 13: DQueue’s structure.

The global queue where data is stored is represented as a linked list of segments. A
segment is simply a contiguous array of data items. This design allows for unbounded
queue capacity while still allowing a fair degree of random access within a segment.
This allows us to use indices to index elements in the queue, thus permitting the use
of inexpensive FAA instructions to swing the head and tail indices.

Each enqueuer maintains a local buffer to batch enqueue items into before flushing to
the global queue. This helps prevent contention and plays nicely with the cache. To
enqueue an item, an enqueuer simply FAA-s the head index to reserve a slot in the
global queue; the obtained index is stored along with the data in the local buffer so that
when flushing the local buffer, the enqueuer knows where to write the data into the
global queue. Note that while flushing, an index may point to a not-yet-existent slot in
the global queue. Therefore, new segments must be allocated on the fly and CAS-ed to
the end of the queue.

The dequeuer dequeues the items by looking at the head index. If the queue is not
empty but the slot at the head index is empty, the dequeuer utilizes a helping mecha-
nism by looking at all enqueuers to help them flush out their local buffer. After this,
the head slot is guaranteed to be non-empty, and the dequeuer can finally dequeue
this value.
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The ABA problem is solved by relying on its safe memory reclamation scheme. In
DQueue, CAS is only used to update the tail pointer to point to a newly allocated
segment. Therefore, the ABA problem in DQueue only involves internal manipulation
of pointers to dynamically allocated memory. This means that if a proper memory
reclamation scheme is used, the ABA problem cannot occur.

DQueue relies on a dedicated garbage collection thread to reclaim segments that
have been exhausted by the dequeuer. However, this should be a careful process as
even though some segments have been exhausted, some enqueuers can still hold an
index that references one of these segments. DQueue implements this by reclaiming
all exhausted segments if there is no enqueuer holding an index referencing these seg-
ments. Unfortunately, we believe DQueue’s scheme is unsafe. Specifically, as described,
DQueue allows the garbage collection thread to reclaim non-adjacent segments in
the global queue without patching any of the next pointers. Any segment just before
a reclaimed segment would point to a deallocated next segment. By definition, this
segment was not reclaimed because it is referenced by an enqueuer. This means this
enqueuer cannot traverse the next pointer chain to get to the end of the queue without
accessing an already-deallocated segment.

If adapted to a distributed environment, the flushing may be expensive, both from
the point of view of the enqueuer and the dequeuer. If the dequeuer has to help
every enqueuer to flush their local buffer, which should always result in at least one
remote operation, the cost would be prohibitively high. Similarly, each flush requires
the enqueuer to issue at least one remote operation, but this is at least acceptable as
flushing is infrequent.

Still, we can see that the pattern of maintaining a local buffer inside each enqueuer
repeats throughout the literature, which we can definitely apply when designing
distributed MPSC queues.

3.1.3 WRLOQueue

WRLQueue [10] is a lock-free MPSC queue specifically designed for embedded real-
time systems. Its main purpose is to avoid excessive modification of storage space.

WRLQueue is simply a pair of buffers: one is worked on by multiple enqueuers, and the
other is worked on by the dequeuer. The structure of WRLQueue is shown in Figure 14.
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Figure 14: WRLQueue’s structure.

The enqueuers batch their enqueues and write multiple elements onto the buffer at
once. They use the usual scheme of FAA-ing the tail index (write_pos in Figure 14) to
reserve their slots and write data items at their leisure.

The dequeuer, upon invocation, will swap its buffer with the enqueuers’ buffer to de-
queue from it, as in Figure 15. However, WRLQueue explicitly states that the dequeuer
has to wait for all enqueue operations to complete in the other buffer before swapping.
If an enqueue suspends or dies, the dequeuer will experience a slowdown,; this clearly
violates the property of non-blocking. Therefore, we believe that WRLQueue is block-
ing, concerning its dequeue operation.

Dequeuer m Enqueuer

write_pos

Figure 15: WRLQueue’s dequeue operation
3.1.4 Jiffy

Jiffy [13] is a fast and memory-efficient wait-free MPSC queue by avoiding excessive
allocation of memory.

data_t data
state_t is_set

(0. SET)

(2. EMPTY) | (X, EMPTY) (4, SET) (X, EMPTY) | (X, EMPTY) (X, EMPTY) | (X, EMPTY) | (X, EMPTY) | (X, EMPTY) —» NULL

(1, (5,
HANDLED) HANDLED)

L J
Rl T

Tail

Segment

Figure 16: Jifty’s structure.
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Like DQueue, Jiffy represents the queue as a doubly-linked list of segments as in
Figure 16. This design again allows Jiffy to be unbounded while using head and tail
indices to index elements. Each segment contains a pointer to a dynamically allocated
array of slots, instead of directly storing the array. Each slot in the segment contains
the data item and a state of that slot (state_t in the figure). There are 3 states: SET,
EMPTY, and HANDLED. Initially, all slots are EMPTY. Instead of keeping a global head index,
there are per-segment Head indices pointing to the first non-HANDLED slot. However,
there is still one global Tail index shared by all the processes.

To enqueue, each enqueuer would FAA the Tail to reserve a slot. If the slot isn’t in the
linked list yet, it tries to allocate new segments and CAS them at the end of the linked
list until the slot is available. It then traverses to the desired segment by following the
previous pointers starting from the last segment. It then writes the data and sets the
slot’s state to SET. Notice that EMPTY slots actually have two substates. If an EMPTY slot
is before the Tail index, that slot is actually reserved by an enqueuer but has not been
set yet, while the EMPTY slots after the Tail index are truly empty.

To dequeue, the dequeuer would start from the Head index of the first segment,
scanning until it finds the first non-HANDLED slot before the end of the queue. If there is
no such slot, the queue is empty, and the dequeuer would return nothing. If this slot is
SET, it simply reads the data item in this slot and sets it to HANDLED. If this slot is EMPTY,
that means this slot has been reserved by an enqueuer that has not finished. In this
case, the dequeuer performs a scan forward to find the first SET slot. If not found, the
dequeuer returns nothing. Otherwise, it continues to repeatedly scan all slots between
the first non-HANDLED and the last found SET slot until the first SET slot in this interval
is unchanged between 2 scans. Only then, the dequeuer would return the data item in
this SET slot and mark it as HANDLED.

Similar to DQueue, CAS is only used when appending new segments at the end of the
queue. Therefore, the ABA problem only involves internal manipulation of pointers to
dynamically allocated memory. Consequently, if a proper memory reclamation scheme
is utilized, the ABA problem is also properly solved.

Regarding memory reclamation, Jiffy does not specify a sufficient scheme: If one
enqueuer is delayed forever, no memory is ever reclaimed. As a consequence, if an
enqueuer is delayed for too long, the system will run out of memory, causing other
enqueuers to fail without making any progress. Effectively, Jiffy is not wait-free.
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3.1.5 Remarks

Out of the 4 investigated MPSC queue algorithms, we quickly eliminate DQueue,
WRLQueue, and Jifty as potential candidates for porting to a distributed environment
because they either do not provide a sufficient progress guarantee or protection against
the ABA problem and memory reclamation problem. Therefore, we will only adapt
LTQueue for distributed environments in the next section. LTQueue also presents some
challenges, though, as it utilizes LL/SC for the ABA solution, which does not exist in
distributed environments. Consequently, to adapt LTQueue, we have to work around
LTQueue’s usage of LL/SC.

3.2 Distributed MPSC queues

This section summarizes, to the best of our knowledge, existing MPSC queue algo-
rithms, which is reflected in Section 3.2.

The only paper we have found so far that either mentions directly or indirectly the
design of an MPSC queue is [1]. [1] introduces a hosted blocking (the original paper
claims that it is lock-free) bounded distributed MPSC queue called active-message
queue (AMQueue) that bears resemblance to WRLQueue in [10].

FIFO queues Active-message queue (AMQueue) [1]
Progress guarantee of Blocking (*)
dequeue
Progress guarantee of Wait-free
enqueue
ABA solution No compare-and-swap usage
Safe memory reclamation Custom scheme

Table 3: Characteristic summary of existing distributed MPSC queues.
R stands for remote operations and L stands for local operations.
(*) [1] claims that it is lock-free.

The structure of AMQueue is given in Figure 17. The MPSC is split into 2 queues, each
maintaining its own set of control variables:

« Writercnt: The number of enqueuers currently writing in this queue.
« 0ffset: The index to the first empty entry in the queue. Note that any shared data
and control variables are hosted on the dequeuer.
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To determine which queue to read and write, the QueueNum binary variable is used.
If QueueNum is 0, then the first queue is being actively written by enqueuers, and the
second queue is being reserved for the dequeuer, and vice versa.

Dequeuer
QueueNum

WriterCnt WriterCnt

Offset Oifset

- Data =

p— —

Figure 17: AMQueue’s structure.

To enqueue, the enqueuer first reads the QueueNum variable to see which queue is active.
The enqueuer then registers for that queue by atomically FAA-ing the corresponding
Writercnt variable. If the fetched value is negative, though, the QueueNum queue is
being swapped for dequeuing, and the enqueuer has to decrement the writercnt vari-
able and repeat the process until Writercnt is positive. After a successful registration,
the enqueuer then reserves an entry in the data array by FAA-ing the offset variable.
After that, the enqueuer can enqueue data at its leisure. Upon success, the enqueuer
has to decrement Writercnt before returning.

To dequeue, the dequeuer inverts QueueNum to direct future enqueuers to the other
queue. The dequeuer then subtracts a sufficiently large number from writercnt to
signal to other enqueuers that it has started processing. The dequeuer has to wait for
all current enqueuers in the queue to finish by repeatedly checking the writercnt
variable, hence the blocking property. After all enqueuers have finished, the dequeuer
then batch-dequeues all data in the queue, resetting the offset and writerCnt vari-
ables to 0.

Based on our discussion, there is currently no non-blocking distrbuted MPSC queue
in the literature. This makes our research the first one of its kind to be about non-
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blocking distributed MPSC queues. AMQueue will serve as a benchmarking baseline
for our MPSC queues in Chapter V.
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Chapter IV Distributed MPSC queues

Based on the MPSC queue algorithms we have surveyed in Chapter III, we propose
three wait-free distributed MPSC queue algorithms:

« dLTQueue (Section 4.2) is a direct modification of the original LTQueue [12]
without any usage of LL/SC, adapted for distributed environment.

« Slotqueue (Section 4.3) is inspired by the timestamp-refreshing idea of dLTQueue
[12] and repeated-rescan of Jifty [13]. Although it still bears some resemblance to
LTQueue, we believe that it is more optimized for distributed context.

« dLTQueueV2 (Section 4.4) introduces some lightweight optimization upon
dLTQueue. Therefore, dLTQueueV2 does not deviate much from dLTQueue. How-
ever, theory-wise, dLTQueueV2 has the best performance characteristics.

The characteristics of these algorithms are discussed in Table 4.

MPSC queues dLTQueue Slotqueue dLTQueueV2
Correctness Linearizable Linearizable Linearizable
Progress guarantee of Wait-free Wait-free Wait-free
dequeue
Progress guarantee of Wait-free Wait-free Wait-free
enqueue
Dequeue 4log,(n)R + 3R+ 2nL 3R+ 10log(n)L
time-complexity 6logy(n)L
Enqueue 6log,(n)R + 4R + 3L 4R + 4L
time-complexity 4log,(n)L
ABA solution Unique No hazardous Unique
timestamp ABA problem timestamp
Safe memory No No No
reclamation dynamic dynamic dynamic
memory memory memory
allocation allocation allocation

Table 4: Characteristic summary of our proposed distributed MPSC queues.
(1) n is the number of processes.
(2) R stands for remote operation and L stands for local operation.

The rest of this chapter is organized as follows. Section 4.1 describes a simple
baseline distributed SPSC that is utilized as the underlying SPSC in our MPSC queues.
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Section 4.2, Section 4.3 and Section 4.4 introduces three wait-free MPSC queues:
dLTQueue, Slotqueue and dLTQueueV2, respectively.

In these next few descriptions, we assume that each process in our program is assigned
a unique number as an identifier, which is termed as its rank. The numbers are taken
from the range of [0, size - 1], with size being the number of processes in our
program.

4.1 A simple baseline distributed SPSC

The three MPSC queue algorithms proposed in Section 4.2, Section 4.3 and Section 4.4
all utilize a baseline distributed SPSC data structure, which we will present in this
section.

For implementation simplicity, we present a bounded SPSC, effectively make our
proposed algorithms support only a bounded number of elements. However, one can
trivially substitute another distributed unbounded SPSC to make our proposed algo-
rithms support an unbounded number of elements, as long as this SPSC supports the
same interface as ours.

The SPSC queue uses a circular array Data with a fixed Capacity. It maintains two
indices: First marks the oldest item not yet removed, and Last marks the next
available slot for insertion. Both indices use modulo arithmetic (First % Capacity and
Last % Capacity) to wrap around the array.

For performance optimization, each process maintains local cached copies of these
indices in First_buf and Last_buf. All indices start at zero. The memory layout is
distributed between processes: the dequeuer hosts the First and Last indices, while
the enqueuer hosts the Data array itself.

Placement-wise, all queue data in this SPSC is hosted on the enqueuer while the control
variables i.e. First and Last, are hosted on the dequeuer.

Shared variables Enqueuer-local variables
Data: gptr<data_t> First_buf: uint64_t
First: gptr<uinté4_t> Last_buf: uint64_t
Last: gptr<uint64_t> Capacity:uint64_t

Dequeuer-local variables
First_buf:uint64_t
Last_buf: uint64_t
Capacity:uint64_t
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The procedures of the enqueuer are given as follows.

Procedure 4: bool spsc_enqueue(data_t v)

1 new_last = Last_buf + 1

if (new_last - First_buf > Capacity)
read(First, &First_buf)

[ CC I )

if (new_last - First_buf > Capacity)
return false
write(Data + Last_buf % Capacity, &v)
write(Last, &new_last)
Last_buf = new_last

N=RENe R R * ) |

return true

spsc_enqueue first computes the new Last value (Line 1). If the queue is full as
indicated by the difference the new Last value and First_buf (Line 2), there can still
be the possibility that some elements have been dequeued but First_buf has not been
synced with First yet, therefore, we first refresh the value of First_buf by fetching
from First (Line 3). If the queue is still full (Line 4), we signal failure (Line 5). Other-
wise, we proceed to write the enqueued value to the entry at Last_buf % Capacity
(Line 6), increment Last (Line 7), update the value of Last_buf (Line 8) and signal
success (Line 9).

Procedure 5: bool spsc_readFronte(data_t* output)

10 if (First_buf >= Last_buf)

11 return false

12 read(First, &First_buf)

13 if (First_buf >= Last_buf)

14 return false

15 read(Data + First_buf % Capacity, output)

16 return true

spsc_readFront, first checks if the SPSC is empty based on the difference between
First_buf and Last_buf (Line 10). Note that if this check fails, we signal failure
immediately (Line 11) without refetching either First or Last. This suffices because
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Last cannot be out-of-sync with Last_buf as we are the enqueuer and First can only
increase since the last refresh of First_buf, therefore, if we refresh First and Last,
the condition on Line 10 would return false anyways. If the SPSC is not empty, we
refresh First and re-perform the empty check (Line 13 - Line 14). If the SPSC is again
not empty, we read the queue entry at First_buf % Capacity into output (Line 15)
and signal success (Line 16).

The procedures of the dequeuer are given as follows.

Procedure 6: bool spsc_dequeue(data_t* output)

17 new_first = First_buf + 1

18 if (new_first > Last_buf)

19 read(Last, &Last_buf)

20 | if (new_first > Last_buf)

21 return false

22 read(Data + First_buf % Capacity, output)
23 write(First, &new_first)

24 First_buf = new_first

25 return true

spsc_dequeue first computes the new First value (Line 17). If the queue is empty as
indicated by the difference the new First value and Last_buf (Line 18), there can still
be the possibility that some elements have been enqueued but Last_buf has not been
synced with Last yet, therefore, we first refresh the value of Last_buf by fetching
from Last (Line 19). If the queue is still empty (Line 20), we signal failure (Line 21).
Otherwise, we proceed to read the top value at First_buf % Capacity (Line 22) into
output, increment First (Line 23) - effectively dequeue the element, update the value
of First_buf (Line 24) and signal success (Line 25).
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Procedure 7: bool spsc_readFrontg(data_t* output)

26 if (First_buf >= Last_buf)

27 read(Last, &lLast_buf)

28 | if (First_buf >= Last_buf)

29 return false

30 read(Data + First_buf % Capacity, output)

31 return true

spsc_readFrontg first checks if the SPSC is empty based on the difference between
First_buf and Last_buf (Line 26). If this check fails, we refresh Last_buf (Line 27)
and recheck (Line 28). If the recheck fails, signal failure (Line 29). If the SPSC is not
empty, we read the queue entry at First_buf % Capacity into output (Line 30) and
signal success (Line 31).

4.2 dLTQueue - Straightforward LTQueue adapted for distributed
environment

This algorithm presents our most straightforward effort to port LTQueue [12] to
distributed context. The main challenge is that LTQueue uses LL/SC as the universal
atomic instruction and also an ABA solution, but LL/SC is not available in distributed
programming environments. We have to replace any usage of LL/SC in the original
LTQueue algorithm. We use compare-and-swap and the well-known monotonic time-
stamp scheme to guard against ABA problem.

4.2.1 Overview
The structure of our dLTQueue is shown as in Figure 18.

We differentiate between 2 types of nodes: enqueuer nodes (represented as the rectan-
gular boxes at the bottom of Figure 18) and normal tree nodes (represented as the
circular boxes in Figure 18).

Each enqueuer node corresponds to an enqueuer. Each time the local SPSC is enqueued
with a value, the enqueuer timestamps the value using a distributed counter shared by
all enqueuers. An enqueuer node stores the SPSC local to the corresponding enqueuer
and a min_timestamp value which is the minimum timestamp inside the local SPSC.

Each tree node stores the rank of an enqueuer process. This rank corresponds to the
enqueuer node with the minimum timestamp among the node’s children’s ranks. The
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Dequeuer

rank of the
enqueuer among
the children that
contains the

¥ DUMMY rank )
\ | \ |
data_t value
uint32_t timestamp D_D D Empty queue
min-timestamp =1 min-timestamp = 2 min-timestamp = 5 min-timestamp = MAX min-timestamp = MAX

Engueuer 0 Engueuver 1 Engueuer 2 Engueuver 3

rank =0 rank = 1 rank = 2 rank = 3

Figure 18: dLTQueue’s structure.

tree node that is attached to an enqueuer node is called a leaf node, otherwise, it is
called an internal node.

Note that if a local SPSC is empty, the min_timestamp variable of the corresponding
enqueuer node is set to MAX_TIMESTAMP and the corresponding leaf node’s rank is set
to DUMMY_RANK.

Placement-wise:
+ The enqueuer nodes are hosted at the corresponding enqueuer.
« All the tree nodes are hosted at the dequeuer.
« The distributed counter, which the enqueuers use to timestamp their enqueued
value, is hosted at the dequeuer.

4.2.2 Data structure

Below is the types utilized in dLTQueue.

Types
data_t = The type of the data to be stored.

spsc_t = The type of the SPSC, this is assumed to be the distributed SPSC in
Section 4.1.
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rank_t = The type of the rank of an enqueuer process tagged with a unique
timestamp (version) to avoid ABA problem.

struct
value: uint32_t
version: uint32_t
end

timestamp_t = The type of the timestamp tagged with a unique timestamp
(version) to avoid ABA problem.

struct
value: uint32_t
version: uint32_t
end
node_t = The type of a tree node.
struct
rank: rank_t

end

The shared variables in our LTQueue version are as follows.

Note that we have described a very specific and simple way to organize the tree
nodes in dLTQueue in a min-heap-like array structure hosted on the sole dequeuer.
We will resume our description of the related tree-structure procedures parent()
(Procedure 8), children() (Procedure 9), leafNodeIndex() (Procedure 10) with this
representation in mind. However, our algorithm does not strictly require this represen-
tation and can be substituted with other more-optimized representations & distributed
placements, as long as the similar tree-structure procedures are supported.

Shared variables
Counter: gptr<uinté4_t>
A distributed counter shared by the enqueuers. Hosted at the dequeuer.
Tree_size: uint64_t
A read-only variable storing the number of tree nodes present in the dLTQueue.
Nodes: gptr<node_t>

An array with Tree_size entries storing all the tree nodes present in the
dLTQueue shared by all processes.

Hosted at the dequeuer.

Capstone Project Report - Semester 243 (2024 - 2025) Page 57/113



a HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

This array is organized in a similar manner as a min-heap: At index 0 is the root

i—1

node. For every index ¢ > 0, I_—J is the index of the parent of node ¢. For every

2

index 7 > 0, 27 + 1 and 27 + 2 are the indices of the children of node 1.

Dequeuer_rank: uint32_t

The rank of the dequeuer process. This is read-only.

Timestamps: A read-only array [0..size - 1] of gptr<timestamp_t>, with size

being the number of processes.

The entry at index 7 corresponds to the Min_timestamp distributed variable at the

process with a rank of 7.

Enqueuer-local variables
Process_count: uint64_t
The number of processes.
Self_rank: uint32_t

The rank of the current enqueuer
process.

Min_timestamp: gptr<timestamp_t>
Spsc: spsc_t
This SPSC is synchronized with the
dequeuer.

Dequeuer-local variables
Process_count: uint64_t
The number of processes.

Spscs: An array of spsc_t with
Process_count entries.

The entry at index ¢ corresponds to
the Spsc at the process with a rank
of 4.

Initially, the enqueuers and the dequeuer are initialized as follows:

Enqueuer initialization

Initialize Process_count, Self_rank
and Dequeuer_rank.

Initialize Spsc to the initial state.

Initialize Min_timestamp to
timestamp_t {MAX_TIMESTAMP, 0}.

Dequeuer initialization
Initialize Process_count, Self_rank
and Dequeuer_rank.
Initialize Counter to 0.
Initialize Tree_size to Process_count
* 2.
Initialize Nodes to an array with
Tree_size entries. Each entry is initial-
ized to node_t {DUMMY_RANK}.
Initialize Spscs, synchronizing each
entry with the corresponding en-
queuer.
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Initialize Timestamps, synchronizing
each entry with the corresponding en-
queuer.

4.2.3 Algorithm

We first present the tree-structure utility procedures that are shared by both the
enqueuer and the dequeuer:

Procedure 8: uint32_t parent(uint32_t index)

1 return (index - 1) / 2

parent returns the index of the parent tree node given the node with index index.
These indices are based on the shared Nodes array. Based on how we organize the
Nodes array, the index of the parent tree node of index is (index - 1) / 2.

Procedure 9: vector<uint32_t> children(uint32_t index)

left_child = index * 2 + 1
right_child = left_child + 1
res = vector<uint32_t>()

g W

if (left_child >= Tree_size)
return res
res.push(left_child)

[ IS e

if (right_child >= Tree_size)
9 return res
10 res.push(right_child)

11 return res

Similarly, children returns all indices of the child tree nodes given the node with index
index. These indices are based on the shared Nodes array. Based on how we organize
the Nodes array, these indices can be either index * 2 + 1 or index * 2 + 2.

Procedure 10: uint32_t leafNodeIndex(uint32_t enqueuer_rank)

12 return Tree_size + enqueuer_rank
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leafNodeIndex returns the index of the leaf node that is logically attached to the
enqueuer node with rank enqueuer_rank as in Figure 18.

The followings are the enqueuer procedures.

Procedure 11: bool enqueue(data_t value)

13 timestamp = faa(Counter, 1)

14 if (!spsc_enqueue(&Spsc, (value, timestamp)))
15 return false

16 propagatee()

17 return true

To enqueue a value, enqueue first obtains a count by FAA-ing the distributed counter
counter (Line 13). Then, we enqueue the data tagged with the timestamp into the
local SPSC (Line 14). Then, enqueue propagates the changes by invoking propagatee()
(Line 16) and returns true.

Procedure 12: void propagatec()

18 if (!refreshTimestamp.())

19 refreshTimestampe()

20 if (!refreshLeafe())

21 refreshLeaf.()

22 current_node_index = leafNodeIndex(Self_rank)

23 repeat

24 current_node_index = parent(current_node_index)
25 if (!refreshe(current_node_index))

26 refresh.(current_node_index)

27 until current_node_index ==

The propagate. procedure is responsible for propagating SPSC updates up to the
root node as a way to notify other processes of the newly enqueued item. It is split
into 3 phases: Refreshing of Min_timestamp in the enqueuer node (Line 18 - Line 19),
refreshing of the enqueuer’s leaf node (Line 20 - Line 21), refreshing of internal nodes
(Line 23 - Line 27). On Line 20 - Line 27, we refresh every tree node that lies between
the enqueuer node and the root node.
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Procedure 13: bool refreshTimestampe()

28
29
30
31
32
33

34

35

36

min_timestamp = timestamp_t {}
read(Min_timestamp, &min_timestamp)
{old_timestamp, old_version} = min_timestamp
front = (data_t {}, timestamp_t {})
is_empty = !spsc_readFront(&Spsc, &front)
if (is_empty)

return cas(Min_timestamp,

timestamp_t {old_timestamp, old_version},
timestamp_t {MAX_TIMESTAMP, old_version + 1})

else

return cas(Min_timestamp,
timestamp_t {old_timestamp, old_version},
timestamp_t {front.timestamp, old_version + 1})

The refreshTimestampe procedure is responsible for updating the Min_timestamp of
the enqueuer node. It simply looks at the front of the local SPSC (Line 32) and CAS
Min_timestamp accordingly (Line 33 - Line 36).
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Procedure 14: bool refreshNode.(uint32_t current_node_index)

37 current_node = node_t {}
38 read(Nodes, current_node_index, &current_node)
39 {old_rank, old_version} = current_node.rank
40 min_rank = DUMMY_RANK
41 min_timestamp = MAX_TIMESTAMP
42 for child_node_index in children(current_node)
43 child_node = node_t {}
44 read(Nodes + child_node_index, &child_node)
45 {child_rank, child_version} = child_node
46 | if (child_rank == DUMMY_RANK) continue
47 child_timestamp = timestamp_t {}
48 read(Timestamps + child_rank, &child_timestamp)
49 | if (child_timestamp < min_timestamp)
50 min_timestamp = child_timestamp
51 min_rank = child_rank
return cas(Nodes + current_node_index,

52 node_t {rank_t {old_rank, old_version}},
node_t {rank_t {min_rank, old_version + 1}})

The refreshNode. procedure is responsible for updating the ranks of the internal
nodes affected by the enqueue. It loops over the children of the current internal nodes
(Line 42). For each child node, we read the rank stored in it (Line 45), if the rank is not
DUMMY_RANK, we proceed to read the value of Min_timestamp of the enqueuer node with
the corresponding rank (Line 48). At the end of the loop, we obtain the rank stored
inside one of the child nodes that has the minimum timestamp stored in its enqueuer
node (Line 50 - Line 51). We then try to CAS the rank inside the current internal node
to this rank (Line 52).
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Procedure 15: bool refreshLeafe()

53 leaf_node_index = leafNodeIndex(Self_rank)

54 leaf_node = node_t {}

55 read(Nodes + leaf_node_index, &leaf_node)

56 {old_rank, old_version} = leaf_node.rank

57 min_timestamp = timestamp_t {}

58 read(Min_timestamp, &min_timestamp)

59 timestamp = min_timestamp.timestamp
return cas(Nodes + leaf_node_index,

60 node_t {rank_t {old_rank, old_version}},
node_t {timestamp == MAX ? DUMMY_RANK : Self_rank, old_version + 1})

The refreshLeaf, procedure is responsible for updating the rank of the leaf node
affected by the enqueue. It simply reads the value of Min_timestamp of the enqueuer
node it is logically attached to (Line 58) and CAS the leaf node’s rank accordingly
(Line 60).

The followings are the dequeuer procedures.

Procedure 16: bool dequeue(data_t* output)

61 root_node = node_t {}
62 read(Nodes, &root_node)
63 {rank, version} = root_node.rank
64 if (rank == DUMMY_RANK) return false
65 output_with_timestamp = (data_t {}, timestamp_t {})
if (!spsc_dequeue(&Spscs[rank]),
&output_with_timestamp))

66

67 return false
68 *output = output_with_timestamp.data
69 propagateq(rank)

70 return true

To dequeue a value, dequeue reads the rank stored inside the root node (Line 63). If
the rank is DUMMY_RANK, the MPSC queue is treated as empty and failure is signaled
(Line 64). Otherwise, we invoke spsc_dequeue on the SPSC of the enqueuer with the
obtained rank (Line 66). We then extract out the real data and set it to output (Line 68).
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We finally propagate the dequeue from the enqueuer node that corresponds to the
obtained rank (Line 69) and signal success (Line 70).

Procedure 17: void propagateg(uint32_t enqueuer_rank)

71 if ('refreshTimestampy(enqueuer_rank))

72 refreshTimestampgy(enqueuer_rank)

73 if (!'refreshLeafy(enqueuer_rank))

74 refreshLeaf (enqueuer_rank)

75 current_node_index = leafNodeIndex(enqueuer_rank)
76 repeat

77 current_node_index = parent(current_node_index)
78 if (!refreshg(current_node_index))

79 refreshyg(current_node_index)

80 until current_node_index ==

The propagateq procedure is similar to propagate., with appropriate changes to
accommodate the dequeuer.

Procedure 18: bool refreshTimestampg(uint32_t enqueuer_rank)

81 min_timestamp = timestamp_t {}
82 read(Timestamps + enqueuer_rank, &min_timestamp)
83 {old_timestamp, old_version} = min_timestamp
84 front = (data_t {}, timestamp_t {})
85 is_empty = !spsc_readFront(&Spscs[enqueuer_rank], &front)
86 if (is_empty)
return cas(Timestamps + enqueuer_rank,

87 timestamp_t {old_timestamp, old_version},
timestamp_t {MAX_TIMESTAMP, old_version + 1})

88 else

return cas(Timestamps + enqueuer_rank,
89 timestamp_t {old_timestamp, old_version},
timestamp_t {front.timestamp, old_version + 1})

The refreshTimestampy procedure is similar to refreshTimestamp., with appropriate
changes to accommodate the dequeuer.
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Procedure 19: bool refreshNodeg(uint32_t current_node_index)

91 current_node = node_t {}
92 read(Nodes + current_node_index, &current_node)
93 {old_rank, old_version} = current_node.rank
94 min_rank = DUMMY_RANK
95 min_timestamp = MAX_TIMESTAMP
96 for child_node_index in children(current_node)
97 child_node = node_t {}
98 read(Nodes + child_node_index, &child_node)
99 {child_rank, child_version} = child_node
100 | if (child_rank == DUMMY_RANK) continue
101 child_timestamp = timestamp_t {}
102 read(Timestamps + child_rank, &child_timestamp)
103 | if (child_timestamp < min_timestamp)
104 min_timestamp = child_timestamp
105 min_rank = child_rank
return cas(Nodes + current_node_index,

106 node_t {rank_t {old_rank, old_version}},
node_t {rank_t {min_rank, old_version + 1}})

The refreshNodey procedure is similar to refreshNode., with appropriate changes to
accommodate the dequeuer.

Procedure 20: bool refreshLeafy(uint32_t enqueuer_rank)

107 leaf_node_index = leafNodeIndex(enqueuer_rank)
108 leaf_node = node_t {}
109 read(Nodes + leaf_node_index, &leaf_node)
110 {old_rank, old_version} = leaf_node.rank
111 min_timestamp = timestamp_t {}
112 read(Timestamps + enqueuer_rank, &min_timestamp)
113 timestamp = min_timestamp.timestamp
return cas(Nodes + leaf_node_index,

114 node_t {rank_t {old_rank, old_version}},
node_t {timestamp == MAX ? DUMMY_RANK : Self_rank, old_version + 1})
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The refreshLeafy procedure is similar to refreshLeaf., with appropriate changes to
accommodate the dequeuer.

4.3 Slotqueue - dLTQueue-inspired distributed MPSC queue with
all constant-time operations

The straightforward dLTQueue algorithm we have ported in Section 4.2 pretty much
preserves the original algorithm’s characteristics, i.e. wait-freedom and time complex-
ity of ©(logn) for dequeue and enqueue operations. We note that in shared-memory
systems, this logarithmic growth is fine. However, in distributed systems, this increase
in remote operations would present a bottleneck in enqueue and dequeue latency. Upon
closer inspection, this logarithmic growth is due to the propagation process because
it has to traverse every level in the tree. Intuitively, this is the problem of us trying
to maintain the tree structure. Therefore, to be more suitable for distributed context,
we propose a new algorithm Slotqueue inspired by LTQueue, which uses a slightly
different structure. The key point is that both enqueue and dequeue only perform a
constant number of remote operations, at the cost of dequeue having to perform O (n)
local operations, where n is the number of enqueuers. Because remote operations are
much more expensive, this might be a worthy tradeoff.

4.3.1 Overview
The structure of Slotqueue is shown as in Figure 19.

Each enqueuer hosts a distributed SPSC as in dLTQueue (Section 4.2). The enqueuer
when enqueues a value to its local SPSC will timestamp the value using a distributed
counter hosted at the dequeuer.

Additionally, the dequeuer hosts an array whose entries each corresponds with an
enqueuer. Each entry stores the minimum timestamp of the local SPSC of the corre-
sponding enqueuer.
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3, 2)
2,1

(data_t, timestamp_t) (1,0

Enqueuer 0

Figure 19: Basic structure of Slotqueue.
4.3.2 Data structure

We first introduce the types and shared variables utilized in Slotqueue.

Types
data_t = The type of data stored.
timestamp_t = uint64_t

spsc_t = The type of the SPSC each enqueuer uses, this is assumed to be the
distributed SPSC in Section 4.1.

Shared variables
Slots: gptr<timestamp_t*>

An array of timestamp_t with the number of entries equal to the number of
enqueuers.

Hosted at the dequeuer.
Counter: gptr<uinté4_t>

A distributed counter.
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Hosted at the dequeuer.

Enqueuer-local variables

Dequeuer_rank: uint64_t
The rank of the dequeuer.

Process_count: uint64_t
The number of enqueuers.

Self_rank: uint32_t

The rank of the current enqueuer

process.

Spsc: spsc_t

This SPSC is synchronized with the

dequeuer.

Dequeuer-local variables

Dequeuer_rank: uint64_t
The rank of the dequeuer.
Process_count: uint64_t
The number of enqueuers.
Spscs: An array of spsc_t with
Process_count entries.
The entry at index ¢ corresponds to
the Spsc at the process with a rank
of <.

Initially, the enqueuer and the dequeuer are initialized as follows.

Enqueuer initialization
Initialize Dequeuer_rank.
Initialize Process_count.
Initialize Self_rank.

Initialize the local Spsc to its initial
state.

4.3.3 Algorithm

The enqueuer operations are given as follows.

Dequeuer initialization

Initialize Dequeuer_rank.

Initialize Process_count.

Initialize Counter to 0.

Initialize the Slots array with size
equal to the number of enqueuers
and every entry is initialized to
MAX_TIMESTAMP.

Initialize the Spscs array, the i-th en-
try corresponds to the Spsc variable of
the process of rank i.
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Procedure 21: bool enqueue(data_t v)

1 timestamp = faa(Counter, 1)

[\

if (!spsc_enqueue(&Spsc, (v, timestamp))) return false

w

if (!refreshEnqueue(timestamp))

'S

refreshEnqueue(timestamp)

(8]

return true

To enqueue a value, enqueue first obtains a timestamp by FAA-ing the distributed
counter (Line 1). It then tries to enqueue the value tagged with the timestamp (Line 2).
At Line 3 - Line 4, the enqueuer tries to refresh its slot’s timestamp.

Procedure 22: bool refreshEnqueue(timestamp_t ts)

6 front = (data_t {}, timestamp_t {})
7 success = spsc_readFront(&Spsc, &front)
8 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
9 if (new_timestamp != ts)
10 return true
11 old_timestamp = timestamp_t {}
12 read(Slots + Self_rank, &old_timestamp)
13 success = spsc_readFront(&Spsc, &front)
14 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
15 if (new_timestamp != ts)
16 | return true
return cas(Slots + Self_rank,

17 old_timestamp,
new_timestamp)

refreshEnqueue’s responsibility is to refresh the timestamp stores in the enqueuer’s
slot to potentially notify the dequeuer of its newly-enqueued element. It first reads
the current front element (Line 7). If the SPSC is empty, the new timestamp is set to
MAX_TIMESTAMP, otherwise, the front element’s timestamp (Line 8). If it finds that the
front element’s timestamp is different from the timestamp ts it returns true immedi-
ately (Line 9 - Line 10). Otherwise, it reads its slot’s old timestamp (Line 12) and re-reads
the current front element in the SPSC (Line 13) to update the new timestamp. Note
that similar to Line 10, refreshEnqueue immediately succeeds if the new timestamp

Capstone Project Report - Semester 243 (2024 - 2025) Page 69/113



HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

[~
BK
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

is different from the timestamp ts of the element it enqueues (Line 16). Otherwise, it

tries to CAS its slot’s timestamp with the new timestamp (Line 17).

The dequeuer operations are given as follows.

Procedure 23: bool dequeue(data_t* output)

19
20
21
22
23
24
25
26
27
28

rank = readMinimumRank()

if (rank == DUMMY_RANK)
return false

output_with_timestamp = (data_t {3}, timestamp_t {})

if (!spsc_dequeue(&Spscs[rank], &output_with_timestamp))
return false

*output = output_with_timestamp.data

if (!refreshDequeue(rank))
refreshDequeue(rank)

return true

To dequeue a value, dequeue first reads the rank of the enqueuer whose slot currently
stores the minimum timestamp (Line 19). If the obtained rank is DUMMY_RANK, failure
is signaled (Line 20 - Line 21). Otherwise, it tries to dequeue the SPSC of the corre-
sponding enqueuer (Line 23). It then tries to refresh the enqueuer’s slot’s timestamp
to potentially notify the enqueuer of the dequeue (Line 26 - Line 27). It then signals
success (Line 28).
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Procedure 24: uint64_t readMinimumRank()

29 buffered_slots = timestamp_t[Process_count] {}

30 for index in 0. .Process_count

31 read(Slots + index, &bufferred_slots[index])

32 if every entry in bufferred_slots is MAX_TIMESTAMP

33 | return DUMMY_RANK

24 let rank be the index of the first slot that contains the minimum timestamp
among bufferred_slots

35 for index in 0. .rank

36 read(Slots + index, &bufferred_slots[index])

37 min_timestamp = MAX_TIMESTAMP

38 for index in 0. .rank

39 timestamp = buffered_slots[index]

40 if (min_timestamp < timestamp)

41 min_rank = index

42 min_timestamp = timestamp

43 return min_rank

readMinimumRank’s main responsibility is to return the rank of the enqueuer from
which we can safely dequeue next. It first creates a local buffer to store the value
read from Slots (Line 29). It then performs 2 scans of Slots and read every entry
into buffered_slots (Line 30 - Line 36). If the first scan finds only MAX_TIMESTAMPs,
DUMMY_RANK is returned (Line 33). From there, based on bufferred_slots, it returns
the rank of the enqueuer whose bufferred slot stores the minimum timestamp (Line 38
- Line 43).
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Procedure 25: refreshDequeue(rank: int) returns bool

46 old_timestamp = timestamp_t {}

47 read(Slots + rank, &old_timestamp)

48 front = (data_t {}, timestamp_t {})

49 success = spsc_readFront(&Spscs[rank], &front)

50 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
return cas(Slots + rank,

51 old_timestamp,
new_timestamp)

refreshDequeue’s responsibility is to refresh the timestamp of the just-dequeued
enqueuer to notify the enqueuer of the dequeue. It first reads the old timestamp of the
slot (Line 47) and the front element (Line 49). If the SPSC is empty, the new timestamp
is set to MAX_TIMESTAMP, otherwise, it is the front element’s timestamp (Line 50). It
finally tries to CAS the slot with the new timestamp (Line 51).

4.4 dLTQueueV2

The structure of dLTQueueV2 is the same as in dLTQueue. There are two key differ-
ences from dLTQueue:

« The min-timestamp variables are no longer hosted on the enqueuers, but on the
sole dequeuer. This helps bring the number of remote operations of the dequeue
operation to a constant number.

+ The enqueuer only performs the propagation procedure when its enqueued item
is the only item in the local SPSC queue. This avoids unnecessary propogations
in most cases, which help bring the number of remote operations of the enqueue
operation to a constant number most of the time.

The new enqueuer process is presented in Procedure 26. Otherwise, dLTQueueV2 is
similar to dLTQueue, as in Section 4.2.
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Procedure 26: bool enqueue(data_t value)

timestamp = faa(Counter, 1)

if (!spsc_enqueue(&Spsc, (value, timestamp)))
return false

front = (data_t {}, timestamp_t {})

is_empty = !spsc_readFront(Spsc, &front)

if (1is_empty && front.timestamp.value != timestamp)
return true

propagate.()

return true

Procedure 26, compared to Procedure 11, adds a small check on line Line 4 - Line 7.

This check reads the front element (Line 5) and compares its timestamp with the

enqueued timestamp (Line 6). If they are equal, then the propagation process can be

safely skipped (Line 7).
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Chapter V Evaluation

This section introduces our benchmarking process, including the benchmarking base-
lines (Section 5.1), the benchmarking environment (Section 5.2) and the microbench-
mark program (Section 5.3). Most importantly, we showcase the results on how well
our algorithms perform and conclude with a discussion about the implications of these
results in Section 5.4.

5.1 Benchmarking baselines

Three MPSC queue algorithms are used as benchmarking baselines:

« dLTQueueV2 + our custom SPSC: Our most optimized version of LTQueue while
still keeping the core algorithm intact.

+ Slotqueue + our custom SPSC: Our modification to dLTQueue to obtain a more
optimized distributed version of LTQueue.

« AMQueue [1]: A hosted bounded MPSC queue algorithm, already detailed in
Section 3.2.

5.2 Benchmarking environment

We conduct all benchmark evaluations using computing resources at the Leibniz
Supercomputing Center’, specifically leveraging both the SuperMUC-NG? and Cool-
MUC-4? systems.

SuperMUC-NG provides extensive computational capacity through its configuration
of over 6,000 compute nodes. Each node features 48 processing cores powered by Intel
Xeon Platinum 8174 processors and is equipped with a minimum of 96GB of memory.
Inter-node communication is facilitated by a high-performance OmniPath network
delivering 100GBit/s bandwidth. The platform operates on SUSE Linux Enterprise
Server 15.3 and employs Intel MPI Version 2019 Update 12 Build 20210429 for parallel
processing coordination.

For additional computational resources, we utilize the CoolMUC-4 infrastructure,
which comprises over 100 compute nodes totaling approximately 12,000 processing
cores. These nodes are powered by Intel Xeon Platinum 8480+ processors, with each
node providing 112 cores of processing capability. Node-to-node connectivity is estab-
lished through an Infiniband network architecture. The system environment consists

‘https://www.lrz.de/
*https://doku.lrz.de/supermuc-ng-10745965.html
*https://doku.lrz.de/coolmuc-4-1082337877.html
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of SUSE Linux Enterprise Server 15.6 with Intel MPI Version 2021.12 Build 20240213
handling message passing operations.

5.3 Microbenchmark program

Our microbenchmark is as follows:

« All processes share a single MPSC; one of the processes is a dequeuer, and the rest
are enqueuers.

« The enqueuers enqueue a total of 10* elements.

« The dequeuer dequeues 10* elements.

« The MPSC is warmed up before the dequeuer starts.

We measure the latency and throughput of the enqueue and dequeue operations. This
microbenchmark is repeated 5 times for each algorithm, and we take the mean of the
results.

5.4 Benchmarking results

Figure 20, Figure 21, and Figure 22 showcase our benchmarking results.
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Figure 20: Microbenchmark results for the enqueue operation.
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Figure 21: Microbenchmark results for the dequeue operation.
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Figure 22: Microbenchmark results for the total throughput.

The most evident thing is that the trends in total throughput and dequeue throughput

are almost identical. This supports our claim that in an MPSC queue, the performance

is bottlenecked by the dequeuer.
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Slotqueue demonstrates superior enqueue performance compared to AMQueue
on both CoolMUC-4 and SuperMUC-NG systems, achieving roughly double the
throughput. Meanwhile, dLTQueueV2 performs the worst enqueue-wise. The perfor-
mance advantage of Slotqueue results from reduced contention between concurrent
enqueuers and minimal interference between enqueue and dequeue operations in
Slotqueue’s architecture, unlike AMQueue’s design. However, despite Slotqueue and
dLTQueueV2's theoretical guarantee of constant-time enqueue operations, practical
measurements reveal declining enqueue throughput as cluster size increases. This
performance degradation occurs due to heightened competition for the shared counter
resource among multiple enqueuers, which eventually overwhelms the interconnect
infrastructure’s capacity.

In contrast, Slotqueue and dLTqueue’s dequeue performance significantly lags behind
AMQueue, showing 10-fold slower performance on CoolMUC-4 and 3-fold slower
performance on SuperMUC-NG. While Slotqueue and dLTQueueV2 execute only a
limited number of remote operations per dequeue compared to AMQueue’s potentially
unlimited remote operations, AMQueue’s batch processing capability dramatically
enhances its dequeue throughput. Additionally, AMQueue’s architecture stores all data
locally on the dequeuer node, eliminating remote operations during dequeue processes
entirely. Consequently, Slotqueue and dLTQueueV2's benefits become less pronounced
when measured against AMQueue’s optimized approach. Similar to enqueue opera-
tions, dequeue throughput also declines with increasing node count, as more processes
competing for access to the dequeuer node intensify contention at that critical bottle-
neck.

While Slotqueue and dLTQueueV2 offer superior fault tolerance compared to
AMQueue and maintains competitive performance across both evaluated systems, it
faces challenges under high-contention scenarios. In large-scale cluster deployments,
the dequeuer node becomes overwhelmed by numerous remote memory access
requests. Therefore, Slotqueue and dLTQueueV2 would benefit from additional opti-
mizations focused on alleviating contention pressure at the dequeuer node to realize
its full potential in distributed environments.
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Chapter VI Conclusion

In this thesis, we introduced Slotqueue and dLTQueueV2, two high-performance non-
blocking distributed MPSC (Multi-Producer Single-Consumer) queues that achieve
constant-time complexity for both enqueue and dequeue operations through a fixed
number of remote operations. Our research encompassed both theoretical analysis
of Slotqueue and dLTQueueV2's properties—including fault tolerance capabilities and
performance characteristics—and comprehensive empirical benchmarking against the
existing AMQueue implementation.

Our findings demonstrate that Slotqueue and dLTQueueV2 achieve wait-free opera-
tion with superior fault tolerance guarantees, maintaining constant remote operation
counts for all queue operations. The experimental results reveal mixed performance
outcomes: Slotqueue and dLTQueueV2 surpass AMQueue in enqueue throughput
while experiencing 3-10 times lower performance for dequeue operations compared
to AMQueue.

However, our evaluation identified two significant limitations in Slotqueue and
dLTQueueV2's current designs. First, the system experiences substantial contention
degradation as the node count increases, resulting in poor scalability characteristics
under large-scale deployments. Second, our existing performance model inadequately
captures contention effects, leading to inaccurate throughput predictions across vary-
ing cluster sizes.

Based on these findings, our future research directions will focus on two primary objec-
tives: developing contention mitigation strategies to prevent the dequeuer node from
becoming a performance bottleneck, and creating more sophisticated performance
models that accurately incorporate contention dynamics to provide reliable scalability
predictions.
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Appendix A Theoretical aspects

This section discusses the correctness and progress guarantee properties of the distrib-
uted MPSC queue algorithms introduced in Chapter IV. Because dLTQueueV2 is very
similar to dLTQueue, we skip the discussion of its theoretical aspects. Furthermore, we
also provide a theoretical performance model of these algorithms to predict how well
they scale to multiple nodes.

A.1 Terminology

Definition A.1.1 In an SPSC/MPSC queue, an enqueue operation e is said to match
a dequeue operation d if d returns the value that e enqueues. Similarly, d is said to
match e. In this case, both e and d are said to be matched.

Definition A.1.2 In an SPSC/MPSC queue, an enqueue operation e is said to be
unmatched if no dequeue operation matches it.

Definition A.1.3 In an SPSC/MPSC queue, a dequeue operation d is said to be
unmatched if no enqueue operation matches it, in other word, d returns false.

A.2 Preliminaries

In this section, we first formalize the system model in Section A.2.1. Based on this, we
describe the aspect-oriented linearizability proof technique for queue to demonstrate
dLTQueue and Slotqueue’s correctness in Section A.2.2. Additionally, we formulate
harmless ABA problem in Section A.2.3. We will base our proofs on these formalisms
to prove their correctness.

A.2.1 System model

Here, we introduce the system model used in our correctness proofs that is compatible
with the one in [25].

A data structure D is a list of methods. An object o is an instance of a data structure D.
Each event e is a tuple of the form (0, M, d,, d,), where M is a method of the object o
and d,, d, are data inputs and outputs, respectively.

An invocation action and a response action are generated by an event. For an event e,
we denote e, 4 y (or e; in short) as its invocation action along with the data input and
e,(a,) (or e, in short) as its response action along with the data output. A history his a
sequence of invocation actions and response actions generated by some data structure.

An event e precedes another event e’ in h, written e < ¢’, if the response of e occurs
h
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before the invocation of €’ in h. A history h is called complete if it does not have any
pending events.

Consider a history h. Suppose every enqueue event inserts a unique value. Consider
an enqueue event e and a dequeue event d. e is said to match d at time ¢ if e; and d,
both happen before ¢ and e,’s input is d,.’s output. In this case, e and d are said to be
matched at time ¢. e is said to be unmatched at time ¢ if e, happens after ¢ or no d exists
that d,. happens before ¢ and e;’s input is d,’s output.

A.2.2 Aspect-oriented linearizability proof

Consider a history h. Suppose every enqueue event inserts a unique value. Consider
an enqueue event e and a dequeue event d. e is said to match d at time ¢ if e; and d,.
both happen before ¢ and e’s input is d’s output. In this case, e and d are said to be
matched at time ¢. e is said to be unmatched at time ¢ if e, happens after ¢ or no d exists
that d,. happens before ¢ and e’s input is d’s output.

We suppose that every enqueue inserts a unique value. In a complete history h of an
MPSC queue, there are 4 types of violation, based on [25].
 (VFresh): A dequeue returns a value not previously inserted by any enqueue.
Formally, there exists a dequeue event that returns true at time ¢ but no enqueue
event matches it at time ¢.
+ (VRepet): Two dequeues return the value inserted by the same enqueue. Formally,
there exists an enqueue event that matches two dequeue events at some time ¢.
« (vord): Two values are enqueued in a certain order, and a dequeue returns the later
value before any dequeue of the earlier value starts. Formally, at some time ¢, there
exist enqueue events e, e, such that e; ﬁ €9, €5 matches d, at time ¢ but e, is

unmatched at time ¢.

+ (vwit): A dequeue returning false even though the queue is never empty during
the execution of the dequeue. Formally, there exists a dequeue d starting at time
t and returning false but there is an enqueue e that finishes before ¢ and is still
unmatched at ¢. This notion of vwit has been simplified for MPSC and SPSC queues.
In the original paper, this violation is more complex to formulate.

We can derive the important Theorem A.2.2.1 from [25].

Theorem A.2.2.1 Every wait-free MPSC queue implementation is linearizable if all
its complete histories have none of the VFresh, VRepet, vord and VWit violations.
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A.2.3 ABA-safety

Not every ABA problem is unsafe. In this section, we formalize which ABA problem is
safe and which is not.

Definition A.2.3.1 A modification instruction on a variable v is an atomic instruc-
tion that may change the value of v e.g. a store or a CAS.

Definition A.2.3.2 A successful modification instruction on a variable v is an
atomic instruction that changes the value of v e.g. a store or a successful CAS.

Definition A.2.3.3 A CAS-sequence on a variable v is a sequence of instructions of
a method m such that:

+ The first instruction is a load vy = load(v).

+ The last instruction is a CAS(&v, vy, vy ).

« There’s no modification instruction on v between the first and the last instruction.

Definition A.2.3.4 A successful CAS-sequence on a variable v is a CAS-sequence
on v that ends with a successful CAS.

Definition A.2.3.5 Consider a method m on a concurrent object S. m is said to be
ABA-safe if and only if for any history of method calls produced from S, we can
reorder any successful CAS-sequences inside an invocation of m in the following
fashion:
« If a successful CAS-sequence is part of an invocation of m, after reordering, it must
still be part of that invocation.
« If a successful CAS-sequence by an invocation of m precedes another by that
invocation, after reordering, this ordering is still respected.
+ Any successful CAS-sequence by an invocation of m after reordering must not
overlap with a successful modification instruction on the same variable.
» After reordering, all method calls’ response events on the concurrent object S stay
the same.

A.3 Theoretical proofs of the distributed SPSC

In this section, we focus on the correctness and progress guarantee of the simple
distributed SPSC established in Section 4.1.

A.3.1 ABA problem

There is no CAS instruction in our simple distributed SPSC, so there’s no potential for
ABA problem.
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A.3.2 Memory reclamation

There is no dynamic memory allocation and deallocation in our simple distributed
SPSC, so it is memory-safe.

A.3.3 Linearizability

We prove that our simple distributed SPSC is linearizable.

Theorem A.3.3.1 (Linearizability of the simple distributed SPSC) The distributed SPSC
given in Section 4.1 is linearizable.

Proof We claim that the following are the linearization points of our SPSC’s methods:

+ The linearization point of an spsc_enqueue call (Procedure 4) that returns false
is Line 3.

« The linearization point of an spsc_enqueue call (Procedure 4) that returns true
is Line 7.

« The linearization point of an spsc_dequeue call (Procedure 6) that returns false
is Line 19.

+ The linearization point of an spsc_dequeue call (Procedure 6) that returns true
is Line 23.

« The linearization point of spsc_readFront. call (Procedure 5) that returns false
is Line 11 or Line 12 if Line 11 is passed.

« The linearization point of spsc_readFront, call (Procedure 5) that returns true
is Line 12.

+ The linearization point of spsc_readFronty call (Procedure 7) that returns false
is Line 27.

« The linearization point of spsc_readFrontg call (Procedure 7) that returns true is
right after Line 27 or right before Line 30 if Line 27 is never executed.

We define a total ordering < on the set of completed method calls based on these lin-
earization points: If the linearization point of a method call A is before the linearization
point of a method call B, then A < B.

If the distributed SPSC is linearizable, < would define a equivalent valid sequential
execution order for our SPSC method calls.

A valid sequential execution of SPSC method calls would possess the following char-
acteristics.

An enqueue can only be matched by one dequeue: Each time an spsc_dequeue is exe-
cuted, it advances the First index. Because only one dequeue can happen at a time, it
is guaranteed that each dequeue proceeds with one unique First index. Two dequeues
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can only dequeue out the same entry in the SPSC’s array if their First indices are
congurent modulo Capacity. However, by then, this entry must have been overwritten.
Therefore, an enqueue can only be dequeued at most once.

A dequeue can only be matched by one enqueue: This is trivial, as based on how
Procedure 6 is defined, a dequeue can only dequeue out at most one value.

The order of item dequeues is the same as the order of item enqueues: To put more
precisely, if there are 2 spsc_enqueues e, e, such that e; < e,, then either e, is un-
matched or e; matches d; and e, matches d, such that d; < d,.If e5 is unmatched, the
statement holds. Suppose e, matches d,. Because e; < e,, based on how Procedure 4
is defined, e; corresponds to a value 7; of Last and e, corresponds to a value i, of Last
such that 7; < i,. Based on how Procedure 6 is defined, each time a dequeue happens
successfully, First would be incremented. Therefore, for e, to be matched, e; must be
matched first because First must surpass i; before getting to i,. In other words, e;
matches d; such that d; < d,.

An enqueue can only be matched by a later dequeue: To put more precisely, if an
spsc_enqueue e matches an spsc_dequeue d, then e < d. If e hasn’t executed its
linearization point at Line 7, there’s no way d’s Line 22 can see €’s value. Therefore, d’s
linearization point at Line 23 must be after e’s linearization point at Line 7. Therefore,
e <d.

A dequeue would return false when the queue is empty: To put more precisely, for an
spsc_dequeue d, if by d’s linearization point, every successful spsc_enqueue e’ such
that ¢’ < d has been matched by d’ such that d’ < d, then d would be unmatched and
return false. By this assumption, any spsc_enqueue e that has executed its lineariza-
tion point at Line 7 before d’s Line 18 has been matched. Therefore, First = Last at
Line 18, or First >= Last_buf, therefore, the if condition at Line 18 - Line 21 is entered.
Also by the assumption, any spsc_enqueue e that has executed its linearization point
at Line 7 before d’s Line 20 has been matched. Therefore, First = Last at Line 20.
Then, Line 21 is executed and d returns false.

A dequeue would return true and match an enqueue when the queue is not empty: To
put more precisely, for an spsc_dequeue d, if there exists a successful spsc_enqueue
e’ such that ¢’ < d and has not been matched by a dequeue d’ such that d’ < €', then
d would be match some e and return true. By this assumption, some ¢’ must have
executed its linearization point at Line 7 but is still unmatched by the time d starts.
Then, First < Last, so d must match some enqueue e and returns true.
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An enqueue would return false when the queue is full: To put more precisely, for an
spsc_enqueue e, if by €’s linearization point, the number of unmatched successful
spsc_enqueue €’ < e by the time e starts equals Capacity, then e returns false. By
this assumption, any d’ that matches e’ must satisfy e < d’, or d’ must execute its
synchronization point at Line 23 after Line 1 and Line 4 of e, then e’s Line 5 must have
executed and return false.

An enqueue would return true when the queue is not full and the number of elements
should increase by one: To put more precisely, for an spsc_enqueue e, if by €’s lineariza-
tion point, the number of unmatched successful spsc_enqueue €’ < e by the time e
starts is fewer than Capacity, then e returns true. By this assumption, First < Last
at least until e’s linearization point and because Line 7 must be executed, which means
the number of elements should increase by one.

A read-front would return false when the queue is empty: To put more precisely, for a
read-front r, if by r’s linearization point, every successful spsc_enqueue e’ such that
e’ < rhasbeen matched by d’ such thatd’ < r,thenr would return false. That means
any unmatched successful spsc_enqueue e must have executed its linearization point
at Line 7 after r’s, or First = Last before r’s linearization point
+ For an enqueuer’s read-front, if 7 doesn’t pass Line 10, the statement holds. If r
passes Line 10, by the assumption, » would execute Line 14, because r sees that
First = Last.
+ For a dequeuer’s read-front, r must enter Line 27 because First_buf >= Last_buf,
which is due to from the dequeuer’s point of view, First_buf = First and
Last_buf <= Last. Similarly, » must execute Line 29 and return false.

A read-front would return true and the first element in the queue is read out: To put
more precisely, for a read-front r, if before r’s linearization point, there exists some
unmatched successful spsc_enqueue €’ such that ¢’ < r, then r would read out the
same value as the first d such that » < d. By this assumption, any d’ that matches some
of these successful spsc_enqueue e’ must execute its linearization point at Line 23 after
r’s linearization point. Therefore, First < Last until ’s linearization point.

Capstone Project Report - Semester 243 (2024 - 2025) Page 88/113



a HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

« For an enqueuer’s read-front, » must not execute Line 11 and Line 14. Therefore,
Line 15 is executed, and First_buf at this point is the same as First_buf of the
first d such that r < d, because we have just read it at Line 12, and any successful
d’ > r must execute Line 23 after Line 15, therefore, First has no chance to be
incremented between Line 12 and Line 15.

» For a dequeuer’s read-front, r must not execute Line 27 - Line 29 and execute
Line 30 instead. It’s trivial that r reads out the same value as the first dequeue d
such that » < d because there can only be one dequeuer.

In conclusion, for any completed history of method calls our SPSC can produce, we
have defined a way to sequentially order them in a way that conforms to SPSC’s
sequential specification. Therefore, our SPSC is linearizable. O

A.3.4 Progress guarantee

Our simple distributed SPSC is wait-free:

+ spsc_dequeue (Procedure 6) does not execute any loops or wait for any other
method calls.

« spsc_enqueue (Procedure 4) does not execute any loops or wait for any other
method calls.

« spsc_readFront, (Procedure 5) does not execute any loops or wait for any other
method calls.

 spsc_readFronty (Procedure 7) does not execute any loops or wait for any other
method calls.

A.3.5 Theoretical performance

A summary of the theoretical performance of our simple SPSC is provided in Table 5.
In the following discussion, R means remote operations and L means local operations.

Operations Time-complexity
spsc_enqueue R+ L
spsc_dequeue R+ L

spsc_readFronte R+ L
spsc_readFronty R

Table 5: Theoretical performance summary of our simple distributed SPSC. R means
remote operations and L means local operations.

For spsc_enqueue, we consider the procedure Procedure 4. In the usual case, the remote
operation on Line 3 is skipped and so only 2 remote puts are performed on Line 6 and
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Line 7. The Data array on Line 6 is hosted on the enqueuer, so this is actually a local
operation, while the control variable is hosted on the dequeuer, so Line 7 is truly a
remote operation. Therefore, theoretically, it is one remote operation plus a local one.

For spsc_dequeue, we consider the procedure Procedure 6. Similarly, in the usual case,
the remote operation on Line 19 is skipped and only the 2 lines Line 22 and Line 23
are executed always. Here, it is the other way around, the access to the Data array on
Line 22 is a truly remote operation while the access to the First control variable is a
local one. Therefore, theoretically, it is one remote operation plus a local one.

For spsc_readFronte, we consider the procedure Procedure 5. The operation on Line 12
is a truly remote operation, as the First control variable is hosted on the dequeuer.
The operation on Line 15 is a remote operation, as the Data array is hosted on the
enqueuer. This means, theoretically, it also takes one remote operation plus a local one.

For spsc_readFrontg, we consider the procedure Procedure 7. Only the operation on
Line 30 is executed always, which results in a truly remote operation as the Data array
is hosted on the enqueuer. Therefore, it only takes one remote operation.

A.4 Theoretical proofs of dLTQueue

In this section, we provide proofs covering all of our interested theoretical aspects
in dLTQueue.

A.4.1 Proof-specific notations
The structure of dLTQueue is presented again in Figure 23.

As a reminder, the bottom rectangular nodes are called the enqueuer nodes and the
circular node are called the tree nodes. Tree nodes that are attached to an enqueuer
node are called leaf nodes, otherwise, they are called internal nodes. Each enqueuer
node is hosted on the enqueuer that corresponds to it. The enqueuer nodes accomo-
date an instance of our distributed SPSC in Section 4.1 and a Min_timestamp variable
representing the minimum timestamp inside the SPSC. Each tree node stores a rank
of a enqueuer that is attached to the subtree which roots at the tree node.

We will refer propagate. and propagatey as propagate if there’s no need for discrim-
ination. Similarly, we will sometimes refer to refreshNode. and refreshNodey as
refreshNode, refreshLeaf. and refreshLeafy as refreshLeaf, refreshTimestampe
and refreshTimestampy as refreshTimestamp.

Definition A.4.1.1 For a tree node n, the rank stored in n at time ¢ is denoted as
rank(n,t).
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Figure 23: dLTQueue’s structure.

Definition A.4.1.2 For an enqueue or a dequeue op, the rank of the enqueuer it affects
is denoted as rank(op).

Definition A.4.1.3 For an enqueuer whose rank is r, the Min_timestamp value
stored in its enqueuer node at time t is denoted as min-ts(r,t). If r is DUMMY_RANK,
min-ts(r,t) is MAX_TIMESTAMP.

Definition A.4.1.4 For an enqueuer with rank r, the minimum timestamp among the
elements between First and Last in its SPSC at time ¢ is denoted as min-spsc-ts(r,t).
If r is dummy, min-spsc-ts(r,t) is MAX.

Definition A.4.1.5 For an enqueue or a dequeue op, the set of nodes that it calls
refreshNode (Procedure 14 or Procedure 19) or refreshLeaf (Procedure 15 or Proce-
dure 20) on is denoted as path(op).

Definition A.4.1.6 For an enqueue or a dequeue, timestamp-refresh phase refer to
its execution of Line 18 - Line 19 in propagate. (Procedure 12) or Line 71 - Line 72 in
propagateqy (Procedure 17).

Definition A.4.1.7 For an enqueue op, and a node n € path(op), node-n-refresh
phase refer to its execution of:
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« Line 20 - Line 21 of propagate. (Procedure 12) if n is a leaf node.
« Line 25 - Line 26 of propagate. (Procedure 12) to refresh n’s rank if n is a non-
leaf node.

Definition A.4.1.8 For a dequeue op, and a node n € path(op), node-n-refresh
phase refer to its execution of:
 Line 73 - Line 74 of propagatey (Procedure 17) if n is a leaf node.
+ Line 78 - Line 79 of propagatey (Procedure 17) to refresh n’s rank if n is a non-
leaf node.

Definition A.4.1.9 refreshTimestamp. (Procedure 13) is said to start its CAS-
sequence if it finishes Line 29. refreshTimestamp. is said to end its CAS-sequence
if it finishes Line 34 or Line 36.

Definition A.4.1.10 refreshTimestampy (Procedure 18) is said to start its CAS-
sequence if it finishes Line 82. refreshTimestampy is said to end its CAS-sequence
if it finishes Line 87 or Line 89.

Definition A.4.1.11 refreshNode. (Procedure 14) is said to start its CAS-sequence if
it finishes Line 38. refreshNode, is said to end its CAS-sequence if it finishes Line 52.

Definition A.4.1.12 refreshNodey (Procedure 19) is said to start its CAS-sequence if
it finishes Line 92. refreshNodey is said to end its CAS-sequence if it finishes Line 106.

Definition A.4.1.13 refreshLeaf. (Procedure 15) is said to start its CAS-sequence if
it finishes Line 55. refreshLeaf. is said to end its CAS-sequence if it finishes Line 60.

Definition A.4.1.14 refreshLeafy (Procedure 20) is said to start its CAS-sequence
if it finishes Line 109. refreshLeafy is said to end its CAS-sequence if it finishes
Line 114.

A.4.2 ABA problem

We use CAS instructions on:
« Line 34 and Line 36 of refreshTimestamp, (Procedure 13).
« Line 52 of refreshNode. (Procedure 14).
Line 60 of refreshLeaf. (Procedure 15).
Line 87 and Line 89 of refreshTimestampy (Procedure 18).
Line 106 of refreshNodey (Procedure 19).
Line 114 of refreshLeafy (Procedure 20).
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Notice that at these locations, we increase the associated version tags of the CAS-ed
values. These version tags are 32-bit in size, therefore, practically, ABA problem can’t
virtually occur. It’s safe to assume that there’s no ABA problem in dLTQueue.

A.4.3 Memory reclamation

Notice that dLTQueue pushes the memory reclamation problem to the underlying
SPSC. If the underlying SPSC is memory-safe, dLTQueue is also memory-safe.

A.4.4 Linearizability

We assume all enqueues succeed in this section. Note that a failed enqueue only causes
the counter to increment, and does not change the queue state in any other ways.

Theorem A.4.4.1 In dLTQueue, an enqueue can only match at most one dequeue.

Proof A dequeue indirectly performs a value dequeue through spsc_dequeue.
Because spsc_dequeue can only match one spsc_enqueue by another enqueue, the
theorem holds. O

Theorem A.4.4.2 In dLTQueue, a dequeue can only match at most one enqueue.

Proof This is trivial as a dequeue can only read out at most one value, so it can only
match at most one enqueue. ]

Theorem A.4.4.3 Only the dequeuer and one enqueuer can operate on an enqueuer
node.

Proof This is trivial based on how the algorithm is defined. O
We immediately obtain the following result.

Corollary A.4.4.4 Only one dequeue operation and one enqueue operation can
operate concurrently on an enqueuer node.

Theorem A.4.4.5 The SPSC at an enqueuer node contains items with increasing
timestamps.

Proof Each enqueue would FAA the distributed counter (Line 13 in Procedure 11)
and enqueue into the SPSC an item with the timestamp obtained from that counter.

Applying Corollary A.4.4.4, we know that items are enqueued one at a time into the
SPSC. Therefore, later items are enqueued by later enqueues, which obtain increasing
values by FAA-ing the shared counter. The theorem holds. O
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Theorem A.4.4.6 For an enqueue or a dequeue op, if op modifies an enqueuer node
and this enqueuer node is attached to a leaf node [, then path(op) is the set of nodes
lying on the path from [ to the root node.

Proof This is trivial considering how propagate. (Procedure 12) and propagateq
(Procedure 17) work. O

Theorem A.4.4.7 For any time ¢ and a node n, rank(n, t) can only be DUMMY_RANK or
the rank of an enqueuer that is attached to the subtree rooted at n.

Proof This is trivial considering how refreshNode., refreshNodeq and refreshLeaf,,
refreshLeafy works. O

Theorem A.4.4.8 If an enqueue or a dequeue op begins its timestamp-refresh
phase at ¢, and finishes at time ¢;, there’s always at least one successful call to
refreshTimestamp. (Procedure 13) or refreshTimestampy (Procedure 18) that affects
the enqueuer node corresponding to rank(op) and this successful call starts and ends
its CAS-sequence between ¢, and ¢;.

Proof Suppose the interested timestamp-refresh phase affects the enqueuer node
n.

Notice that the timestamp-refresh phase of both enqueue and dequeue consists of
at most 2 refreshTimestamp calls affecting n.

If one of the two refreshTimestamps of the timestamp-refresh phase succeeds, then
the theorem obviously holds.

Consider the case where both fail.

The first refreshTimestamp fails because there’s another refreshTimestamp on n
ending its CAS-sequence successfully after ¢, but before the end of the first
refreshTimestamp’s CAS-sequence.

The second refreshTimestamp fails because there’s another refreshTimestamp on
n ending its CAS-sequence successfully after ¢, but before the end of the second
refreshTimestamp’s CAS-sequence. This another refreshTimestamp must start its
CAS-sequence after the end of the first successful refreshTimestamp, otherwise,
it would overlap with the CAS-sequence of the first successful refreshTimestamp,
but successful CAS-sequences on the same enqueuer node cannot overlap as ABA
problem does not occur. In other words, this another refreshTimestamp starts and
successfully ends its CAS-sequence between ¢, and ¢ .

We have proved the theorem. O
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Theorem A.4.4.9 If an enqueue or a dequeue begins its node-n-refresh phase at ¢,
and finishes at ¢;, there’s always at least one successful refreshNode or refreshLeaf
calls affecting n and this successful call starts and ends its CAS-sequence between ¢,
and t;.

Proof This is similar to the above proof. OJ

Theorem A.4.4.10 Consider a node n. If within ¢, and ¢,, any dequeue d where
n € path(d) has finished its node-n-refresh phase, then min-ts(rank(n,t,),t,) is
monotonically decreasing for ¢,,t, € [tg, %] .

Proof We have the assumption that within ¢, and ¢,, all dequeue where n € path(d)
has finished its node-n-refresh phase. Notice that if n satisfies this assumption, any
child of n also satisfies this assumption.

We will prove a stronger version of this theorem: Given a node n, time ¢, and ¢,
such that within [, t,], any dequeue d where n € path(d) has finished its node-n-
refresh phase. Consider the last dequeue’s node-n-refresh phase before ¢, (there
maybe none). Take t,(n) and t_(n) to be the starting and ending time of the CAS-
sequence of the last successful n-refresh call during this phase, or if there is none,
ty(n) = t,(n) = 0. Then, min-ts(rank(n,t,),t,) is monotonically decreasing for
tyrt, € [to(n), ).

Consider any enqueuer node of rank r that is attached to a satisfied leaf node. For any
n’ that is a descendant of n, during ¢t (n") and t,, there’s no call to spsc_dequeue.
Because:
+ Ifan spsc_dequeue starts between ¢, and ¢, the dequeue that calls it hasn’t finished
its node-n’-refresh phase.
« If an spsc_dequeue starts between t,(n’) and t,, then a dequeue’s node-n’-re-
fresh phase must start after ¢,(n") and before t,, but this violates our assumption

of t (n”).

Therefore, there can only be calls to spsc_enqueue during ¢ (n’) and t¢,. Thus,
min-spsc-ts(r,t,) can only decrease from MAX_TIMESTAMP to some timestamp and
remain constant for ¢, € [t (n’),,]. (1)

Similarly, there can be no dequeue that hasn’t finished its timestamp-refresh phase
during t,(n’) and ¢,. Therefore, min-ts(r,t,) can only decrease from MAX_TIMESTAMP
to some timestamp and remain constant for ¢, € [t (n'),t;]. (2)

Consider any satisfied leaf node n. There can’t be any dequeue that hasn’t finished its
node-ng-refresh phase during t_(n,) and t,. Therefore, any successful refreshLeaf
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affecting n, during [t.(n,),t;] must be called by an enqueue. Because there’s no
spsc_dequeue, this refreshLeaf can only set rank(n,t, ) from DUMMY_RANK to r and
this remains r until ¢;, which is the rank of the enqueuer whose node it is attached to.
Therefore, combining with (1), min-ts(rank(ng,t,), ty) is monotonically decreasing
fort,,t, € [t.(ng),t1]. (3)

Consider any satisfied non-leaf node n’ that is a descendant of n. Suppose during
[t.(n"),t;], we have a sequence of successful n’-refresh calls that start their CAS-
sequences at ¥ .10 < bapart1 < bstarta < - < bgparer and end them at ¢, <
0 =1ts(n"). We
(i+1) because successful CAS-sequences cannot overlap.

tendl < tenda < oo < tengp- By definition, ¢, ;o = t.(n’) and ¢
<t

start-

can prove that ¢

end-1i start-

Due to how refreshNode (Procedure 14 and Procedure 19) is defined, forany k > 7 > 1:
+ Suppose t,.,,.x_; (¢) is the time refreshNode reads the rank stored in the child node

< trank—i(c) <t

« Suppose t,, ;(c) is the time refreshNode reads the timestamp stored in the

<t (C) < tend—i'

+ There exists a child ¢; such that rank(n’,t,,,,) = rank(c;,t,4nri(c;)). (4)

C, SO tstart—i end-i*

enqueuer with the rank read previously, so ¢

start-1 ts-1

« For every child ¢ of n’,
min-ts (’I“CL’I’L]C(’N,/, tend—i), tts—i (Cz))
S min_ts(rank(ca t'rank:—i (C))7 tts—i (C)> (5)

Suppose the stronger theorem already holds for every child ¢ of n’. (6)

For any i > 1, we have t.(c) <t,(n') < Ustart-(i—1) < tmnk-(iq)(c) < topd-(i-1) <
tstarti < trank.i(€) < t1. Combining with (5), (6), we have for any k > i > 1,
min-ts(rank(n’,t ,5.:),tis.:(¢;))

< min-ts(rank(c, t,4nr-i(¢)), tysi(c))

< min-ts (rank: <c, trank-(i-1) (C)) yliei (C)) :

Choose ¢ = ¢;_; asin (4). We have forany k > i > 1,
min-ts(rank(n’,te,q.i); tes.i(c;))

< min-ts(rank(c; 1, tank-(i-1) (‘%’-1)) trsni(Cii1))
= min-ts(rank(n’, te,q 1) )s tes-i(Cim1)-

Because t
1> 1,
min-ts(rank(n’, tend—i)? tend—i)

t5-i(Ci) S tepg and by ;(¢; 1) > tepg ;1) and (2), we have for any k >

< man-ts (rank: <"I, tend—(i—l)) ) tend—(i—l))' (*)
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rank(n’,t,) can only change after each successful refreshNode, therefore, the
sequence of its value is rank(n’,t,,,40), rank(n’, t.,q.1)s - rank(n’ t 1) (x %)

Note that if refreshNode observes that an enqueuer has a Min_timestamp of
MAX_TIMESTAMP, it would never try to CAS n’’s rank to the rank of that enqueuer
(Line 46 of Procedure 14 and Line 100 of Procedure 19). So, if refreshNode actually
sets the rank of n’ to some non-DUMMY_RANK value, the corresponding enqueuer must
actually has a non-MAX_TIMESTAMP Min-timestamp at some point. Due to (2), this is
constant up until ¢;. Therefore, min-ts(rank(n’,t_,,,,;),t)) is constant for any ¢ >
t
there’s a refreshNode before . If there’s no refreshNode before ¢, it is constantly

end; and k>4 > 1. min-ts(rank(n’,t,, 40),t)) is constant for any t > t_,,; if

MAX_TIMESTAMP. So, min-ts(rank(n’,t,,  ..),t)) is constant forany ¢t > ¢, ,, and k >
i > 0. (% * )
Combining (), (* %), (* * %), we obtain the stronger version of the theorem. O

Theorem A.4.4.11 If an enqueue e obtains a timestamp ¢, finishes at time ¢, and is
still unmatched at time ¢, then for any subrange T of [t,, ;] that does not overlap
with a dequeue, min-ts(rank(root,t,),t,) < cforanyt, t, € T.

Proof We will prove a stronger version of this theorem: Suppose an enqueue e obtains
a timestamp c, finishes at time ¢, and is still unmatched at time ¢,. For every n, €
path(e), ng is the leaf node and n; is the parent of n;_,, ¢ > 1. If e starts and finishes
cand ¢

start-1

its node-n,-refresh phase at ¢ then for any subrange T of [t.,,4.;, t1]

end-1
that does not overlap with a dequeue d where n, € path(d) and d hasn’t finished its
t,eT.

ry Vs

node n,; refresh phase, min-ts(rank(n;,t.),t,) < c for any ¢
Ift; <t then the theorem holds.
Take r, to be the rank of the enqueuer that performs e.

Suppose e enqueues an item with the timestamp c into the local SPSC at time ., ;¢ yc-

Because it is still unmatched up until ¢;, ¢ is always in the local SPSC during ¢, ,4ce

to ¢;. Therefore, min-spsc-ts(r,,t) < cforany t € [t.nqueue: t1]- (1)

Suppose e finishes its timestamp refresh phase at ¢, ,,. Because ¢, ,, >t
due to (1), min-ts(r,,t) < cforevery t € [t, s, t1]. (2)

enqueue’

Consider the leaf node ny € path(e). Due to (2), rank(ny,t) is always r, for any t €
[tend.0s t1]- Also due to (2), min-ts(rank(ng,t,.),t,) < cforanyt,,t, € [t.nqa0st1])-

Consider any non-leaf node n; € path(e). We can extend any subrange T to the left
until we either:
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+ Reach a dequeue d such that n; € path(d) and d has just finished its node-n,-
refresh phase.
« Reacht

end-i*
Consider one such subrange 7.
Notice that 7, always starts right after a node-n;-refresh phase. Due to

Theorem A.4.4.9, there’s always at least one successful refreshNode in this node-n,-
refresh phase.

Suppose the stronger version of the theorem already holds for n, ;. That is, if
e starts and finishes its node-n,_,-refresh phase at ¢, ;1) and t.,4 (1)
then for any subrange 7' of [tend_(i_l),tl] that does not overlap with a dequeue
d where n; € path(d) and d hasn’t finished its node m, ; refresh phase,
t,eT.

TYYS

min-ts(rank(n;,t,.),t,) < cforanyt

Extend T} to the left until we either:
+ Reach a dequeue d such that n; € path(d) and d has just finished its node-n,_,-
refresh phase.
* Reacht,., 4 (;_1)-

Take the resulting range to be 7, ;. Obviously, T; C T;_;.

T, _, satisifies both criteria:
« It’s a subrange of [tend_(i_l), t1]-
« It does not overlap with a dequeue d where n, € path(d) and d hasn’t finished its
node-n;_,-refresh phase.

Therefore, min-ts(rank(n;_,,t,),t;) < cforanyt,,t, € T, ;.

rvs TYYs

Consider the last successful refreshNode on n; ending not after 7} starts. Take ¢, and
t./ to be the start and end time of this refreshNode’s CAS-sequence. Because right at
the start of 7, a node-n-refresh phase just ends, this refreshNode must be within
this node-n;-refresh phase. (4)

This refreshNode’s CAS-sequence must be within 7, ;. This is because right at the
start of T, _;, a node-n,_;-refresh phase just ends and 7T, _; D T}, T; ; must cover
the node-n,;-refresh phase whose end T} starts from. Combining with (4),t,, € T;_,
andt, € T;. (5)

Due to how refreshNode is defined and the fact that n,_; is a child of n,:
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* t,,nk 1S the time refreshNode reads the rank stored inn, ;,sothatt, <t , .. <
t.,. Combining with (5), t,.,.., € T;_1-

s t,, is the time refreshNode reads the timestamp from that rank ¢, <t¢,, <?./.
Combining with (5),t,, € T, ;.

+ There existsa time t', t,, <t' <t,,
min-ts(rank(n;,t.),t") < min-ts(rank(n,_q,t.qni), tes)- (6)

i Ve’
From (6) and the fact thatt,.,,,, € T, ; and t,, € T, ;, min-ts(rank(n;,t,),t") < c.

There shall be no spsc_dequeue starting within ¢, till the end of 7} because:
« If there’s an spsc_dequeue starting within 7}, then 7;’s assumption is violated.
« If there’s an spsc_dequeue starting after ¢,, but before 7}, its dequeue must finish
its node-n;-refresh phase after ¢, and before 7. However, then ¢ is no longer
the end of the last successful refreshNode on n, not after 7.

Because  there’s  no spsc_dequeue starting  in  this  timespan,
min-ts(rank(n;,t./),t,) < min-ts(rank(n,,t.),t") <ec.

(' 79

If there’s no dequeue between t, and the end of 7T, whose node-n;-refresh

phase hasn’t finished, then by Theorem A.4.4.10, min-ts(rank(n;,t,.),t,) is monot-

onically decreasing for any ¢,, ¢, starting from ¢_, till the end of 7. Therefore,
min-ts(rank(n;,t,.),t,) < cforanyt, t, € T,.

1) °r/rvs TYYS

Suppose there’s a dequeue whose node-n;-refresh phase is in progress some time
between ¢., and the end of T;. By definition, this dequeue must finish it before T;.
Because ¢,/ is the time of the last successful refresh on n; before T}, t,, must be
within the node-n,-refresh phase of this dequeue and there should be no dequeue
after that. By the way ¢_, is defined, technically, this dequeue has finished its node-
n;-refresh phase right at ¢_,. Therefore, similarly, we can apply Theorem A.4.4.10,
min-ts(rank(n,,t,.),t,) < cforanyt,. t, € T,.

1) Yr TS

By induction, we have proved the stronger version of the theorem. Therefore, the
theorem directly follows. a

Corollary A.4.4.12 Suppose root is the root tree node. If an enqueue e obtains a
timestamp c, finishes at time ¢, and is still unmatched at time ¢, then for any subrange
T of [ty, t;] that does not overlap with a dequeue, min-spsc-ts(rank(root,t.),t,) <
t,eT.

TYYS

c for any ¢

Proof Callt,,,, andt,,  to be the start and end time of 7.
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Applying Theorem A.4.4.11, we have that min-ts(rank(root,t,),t,) < c¢ for any
t.,t,eT.

Y78

Fix t,. so that rank(root,t,.) = r. We have that min-ts(r,t) < cforany t € T.

min-ts(r,t) can only change due to a successful refreshTimestamp on the enqueuer
node with rank r. Consider the last successful refreshTimestamp on the enqueuer
node with rank r not after 7. Suppose that refreshTimestamp reads out the minimum
timestamp of the local SPSC at t’ <t

start:
Therefore, min-ts(r,ty,,..) = min-spsc-ts(r,t’) < c.

We will prove that after ¢’ until ¢ there’s no spsc_dequeue on 7 running.

end>

Suppose the contrary, then this spsc_dequeue must be part of a dequeue. By definition,

this dequeue must start and end before ¢ else it violates the assumption of 7. If

start>
this spsc_dequeue starts after ¢/, then its refreshTimestamp must finish after ¢’ and
before ¢

t

start- DUt this violates the assumption that the last refreshTimestamp not after

. . . Y
stqrt T€Ads out the minimum timestamp at ¢’.

Therefore, there’s no spsc_dequeue on 7 running during [t',t,,,]. Therefore,
min-spsc-ts(r,t) remains constant during [t’, ., ;] because it is not MAX_TIMESTAMP.

In conclusion, min-spsc-ts(r,t) < cfort € [t',t,,4]-
We have proved the theorem. O

Theorem A.4.4.13 Given a rank r. If within [¢, t;], there’s no uncompleted enqueue
on rank r and all matching dequeues for any completed enqueues on rank r has
finished, then rank(n,t) # r for every node n and t € [t,, t4].

Proof If n doesn’t lie on the path from root to the leaf node that is attached to the
enqueuer node with rank r, the theorem obviously holds.

Due to Corollary A.4.4.4, there can only be one enqueue and one dequeue at a time

at an enqueuer node with rank 7. Therefore, there is a sequential ordering among the
enqueues and a sequential ordering within the dequeues. Therefore, it is sensible to
talk about the last enqueue before ¢, and the last matched dequeue d before .

Since all of these dequeues and enqueues work on the same local SPSC and the SPSC
is linearizable, d must match the last enqueue. After this dequeue d, the local SPSC
is empty.
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When d finishes its timestamp-refresh phase at ¢,, < ¢, due to Theorem A.4.4.8,

there’s at least one successful refreshTimestamp call in this phase. Because the last
enqueue has been matched, min-ts(r,t) = MAX_TIMESTAMP for any t € [t,,, t;].

Similarly, for a leaf node n, suppose d finishes its node-n,-refresh phase at ¢, >
t,s» then rank(ngy,t) = DUMMY_RANK for any t € [t, o, t1]. (1)

For any non-leaf node n,; € path(d), when d finishes its node-n;-refresh phase at
t,;, there’s at least one successful refreshNode call during this phase. Suppose this
; and ¢

start-1

refreshNode call starts and ends at ¢ Suppose rank(n;_;,t) # r for

end-i-
te [tr—(i—1)7t1]' By the way refreshNode is defined after this refreshNode call, n,
will store some rank other than r. Because of (1), after this up until ¢;, 7 never has
a chance to be visible to a refreshNode on node n,; during [n, ;,t]. In other words,

rank(n;,t) # rfort € [t,;, t1].
By induction, we obtain the theorem. O

Theorem A.4.4.14 All of dLTQueue’s complete histories do not have the VFresh
violation.

Proof Notice that the dequeuer dequeues by first reading the root node’s rank and
then returns a value by dequeuing from the local SPSC of the corresponding enqueuer.
Suppose the SPSC is linearizable, the dequeued value must first be enqueued by some
enqueuer. The theorem holds. O

Theorem A.4.4.15 All of dLTQueue’s complete histories do not have the VRepet
violation.

Proof The dequeuer dequeues by dequeuing from the local SPSC of some enqueuer.
If two dequeues are dequeuing from two different local SPSC, there’s no way for
two dequeues to dequeue a value twice. Suppose the SPSC is linearizable, the same
statement holds true for when the two dequeues are dequeuing from the same local
SPSC. The theorem holds. O

Theorem A.4.4.16 All of dLTQueue’s complete histories do not have the vord
violation.

Proof Consider a complete history ¢ and two enqueues e, e, such that e; precedes
e,. Because e; precedes e,, its timestamp c; must be strictly smaller than e,’s time-
stamp c,. Suppose e; finishes at time ¢, and is still unmatched at time ¢;. Then, by
t,etT:

Y78

Corollary A.4.4.12, for any subrange T of [t, t,], for any ¢

min-spsc-ts(rank(root,t,.),t,) < c¢; < ¢y
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Therefore, before e; is matched, there’s no chance the root node can refer to e,. It
follows that e; must be matched before e,. The theorem holds. O

Theorem A.4.4.17 All of dLTQueue’s complete histories do not have the vwit
violation.

Proof Formally, we will prove that there doesn’t exist an unmatched dequeue d and
a finished unmatched enqueue e by the time d starts.

The only way for a dequeue to return false is for it to read out a DUMMY rank from the
root node. If there’s a finished unmatched enqueue by the time a dequeue starts, the
root node must store a non-DUMMY rank, by Theorem A.4.4.11. Therefore, the theorem

holds. O

Theorem A.4.4.18 dLTQueue is wait-free.
Proof This is trivial, as dLTQueue never enters a loop. a
Theorem A.4.4.19 dLTQueue is linearizable.

Proof This follows directly from Theorem A.2.2.1, Theorem A.4.4.14,
Theorem A.4.4.15, Theorem A.4.4.16, Theorem A.4.4.17 and Theorem A.4.4.18. O

A.4.5 Progress guarantee

Notice that every loop in dLTQueue is bounded, and no method have to wait for
another. Therefore, dLTQueue is wait-free.

A .4.6 Theoretical performance

A summary of the theoretical performance of dLTQueue is provided in Table 6, which
is already shown in Table 4. In the following discussion, R means remote operations
and L means local operations.

Operations Time-complexity
enqueue 6log,(n)R + 4logy(n)L
dequeue 41og,(n)R + 6logy(n)L

Table 6: Theoretical performance summary of dLTQueue. R means remote operations
and L means local operations.

For enqueue, we consider the procedure Procedure 11. We consider the propagation
process, which causes most of the remote operations, while Line 13 and Line 14 are
negligible. Notice that the number of node refreshes are proportional to the number of
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the level of the trees, which is O(n) for n being the number of processes. Each level of
the tree in the worst case needs 2 retries, each retry would have to:

 Read the current node (which is a truly remote operation for enqueue).

+ Read the two child nodes (which is 2 truly remote operations for enqueue).

« Read the two min-timestamp variables in the two child nodes (which is 2 truly local

operations for enqueue).
« Compare-and-swap the current node (which is a truly remote opoeration for

enqueue).

In total, each level requires 6 remote operations and 4 local operations. Therefore,
enqueue requires about 6 log,(n)R + 4log,(n)L operations.

For dequeue, it is similar to enqueue but the other way around, what makes for a remote
operation in enqueue is a local operation in dequeue and otherwise. Therefore, dequeue
requires about 4log,(n) R + 6 log, (n) L operations.

A.5 Theoretical proofs of Slotqueue

In this section, we provide proofs covering all of our interested theoretical aspects

in Slotqueue.

A.5.1 Proof-specific notations

As a refresher, Figure 24 shows the structure of Slotqueue.
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Dequeuer
minimum timestamp
Counter: 7 of local queue
timestamp_t 0 MAX 3 MAX 5
3, 2)
2,1

(data_t, timestamp_t) (1,0

Enqueuer 0

Figure 24: Basic structure of Slotqueue.

Each enqueuer hosts an SPSC that can only accessed by itself and the dequeuer. The
dequeuer hosts an array of slots, each slot corresponds to an enqueuer, containing its
SPSC’s minimum timestamp.

We apply some domain knowledge of Slotqueue algorithm to the definitions introduced
in Section A.2.3.

Definition A.5.1.1 A CAS-sequence on a slot s of an enqueue that affects s is the
sequence of instructions from Line 12 to Line 17 of its refreshEnqueue (Procedure 22).

Definition A.5.1.2 A slot-modification instruction on a slot s of an enqueue that
affects s is Line 17 of refreshEnqueue (Procedure 22).

Definition A.5.1.3 A CAS-sequence on a slot s of a dequeue that affects s is the
sequence of instructions from Line 47 to Line 51 of its refreshDequeue (Procedure 25).

Definition A.5.1.4 A slot-modification instruction on a slot s of a dequeue that
affects s is Line 51 of refreshbDequeue (Procedure 25).

Definition A.5.1.5 A CAS-sequence of a dequeue/enqueue is said to observe a slot
value of s if it loads s at Line 12 of refreshEnqueue or Line 47 of refreshDequeue.
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The followings are some other definitions that will be used throughout our proof.

Definition A.5.1.6 For an enqueue or dequeue op, rank(op) is the rank of the
enqueuer whose local SPSC is affected by op.

Definition A.5.1.7 For an enqueuer whose rank is r, the value stored in its corre-
sponding slot at time ¢ is denoted as slot(r, t).

Definition A.5.1.8 For an enqueuer with rank 7, the minimum timestamp among
the elements between First and Last in its local SPSC at time ¢ is denoted as
min-spsc-ts(r,t).

Definition A.5.1.9 For an enqueue, slot-refresh phase refer to its execution of Line 3
- Line 4 of Procedure 21.

Definition A.5.1.10 For a dequeue, slot-refresh phase refer to its execution of
Line 26 - Line 27 of Procedure 23.

Definition A.5.1.11 For a dequeue, slot-scan phase refer to its execution of Line 29
- Line 43 of Procedure 24.

A.5.2 ABA problem

Noticeably, we use no scheme to avoid ABA problem in Slotqueue. In actuality, ABA
problem does not adversely affect our algorithm’s correctness, except in the extreme
case that the 64-bit distributed counter overflows, which is unlikely.

We will prove that Slotqueue is ABA-safe, as introduced in Section A.2.3.

Notice that we only use CASes on:
« Line 17 of refreshEnqueue (Procedure 22), which is part of an enqueue.
« Line 51 of refreshbequeue (Procedure 25), which is part of a dequeue.

Both CAses target some slot in the Slots array.

Theorem A.5.2.1 (Concurrent accesses on an SPSC and a slot) Only one dequeuer and
one enqueuer can concurrently modify an SPSC and a slot in the Slots array.

Proof This is trivial to prove based on the algorithm’s definition. O

Theorem A.5.2.2 (Monotonicity of SPSC timestamps) Each SPSC in Slotqueue contains
elements with increasing timestamps.

Proof Each enqueue would FAA the distributed counter (Line 1 in Procedure 21) and
enqueue into the local SPSC an item with the timestamp obtained from the counter.

Applying Theorem A.5.2.1, we know that items are enqueued one at a time into the
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SPSC. Therefore, later items are enqueued by later enqueues, which obtain increasing
values by FAA-ing the shared counter. The theorem holds. O

Theorem A.5.2.3 A refreshtEnqueue (Procedure 22) can only change a slot to a value
other than MAX_TIMESTAMP.

Proof For refreshEnqueue to change the slot’s value, the condition on Line 15 must
be false. Then, new_timestamp must equal to ts, which is not MAX_TIMESTAMP. It’s
obvious that the CAS on Line 17 changes the slot to a value other than MAX_TIMESTAMP.(]

Theorem A.5.2.4 (ABA safety of dequeue) Assume that the 64-bit distributed counter
never overflows, dequeue (Procedure 23) is ABA-safe.

Proof Consider a successful CAS-sequence on slot s by a dequeue d. Denote ¢ as
the value this CAS-sequence observes.

If there’s no successful slot-modification instruction on slot s by an enqueue e
within d’s successful CAS-sequence, then this dequeue is ABA-safe.

Suppose the enqueue e executes the last successful slot-modification instruction
on slot s within d’s successful CAS-sequence. Denote ¢, to be the value that e sets

s ().
If t, # t;, this CAS-sequence of d cannot be successful, which is a contradiction.
Therefore, t, = t,.

Note that e can only set s to the timestamp of the item it enqueues. That means, e
must have enqueued a value with timestamp t,;. However, by definition (%), ¢, is read
before e executes the CAS, so d cannot observe t; because e has CAS-ed slot s. This
means another process (dequeuer/enqueuer) has seen the value e enqueued and CAS s
for e before t;. By Theorem A.5.2.1, this “another process” must be another dequeuer

d’ that precedes d because it overlaps with e.

Because d’ and d cannot overlap, while e overlaps with both d’ and d, e must be the
first enqueue on s that overlaps with d. Combining with Theorem A.5.2.1 and the fact

that e executes the last successful slot-modification instruction on slot s within d’s
successful CAS-sequence, e must be the only enqueue that executes a successful
slot-modification instruction on s within d’s successful CAS-sequence.

During the start of d’s successful CAS-sequence till the end of e, spsc_readFront on
the local SPSC must return the same element, because:
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« There’s no other dequeue running during this time.

+ There’s no enqueue other than e running.

+ The spsc_enqueue of e must have completed before the start of d’s successful CAS
sequence, because a previous dequeuer d’ can see its effect.

Therefore, if we were to move the starting time of d’s successful CAS-sequence right
after e has ended, we still retain the output of the program because:

« The CAS sequence only reads two shared values: the rankth entry of Slots and
spsc_readFront (), but we have proven that these two values remain the same if
we were to move the starting time of d’s successful CAS-sequence this way.

« The CAS sequence does not modify any values except for the last CAS instruction,
and the ending time of the CAS sequence is still the same.

« The CAS sequence modifies the rankth entry of Slots at the CAS but the target
value is the same because inputs and shared values are the same in both cases.

We have proved that if we move d’s successful CAS-sequence to start after the last
successful slot-modification instruction on slot s within d’s successful CAS-
sequence, we still retain the program’s output.

If we apply the reordering for every dequeue, the theorem directly follows. O

Theorem A.5.2.5 (ABA safety of enqueue) Assume that the 64-bit distributed counter
never overflows, enqueue (Procedure 21) is ABA-safe.

Proof Consider a successful CAS-sequence on slot s by an enqueue e. Denote £,
as the value this CAS-sequence observes.

If there’s no successful slot-modification instruction on slot s by a dequeue d
within e’s successful CAS-sequence, then this enqueue is ABA-safe.

Suppose the dequeue d executes the last successful slot-modification instruction
on slot s within e’s successful CAS-sequence. Denote ¢ to be the value that d sets
s. If t; # t., this CAS-sequence of e cannot be successful, which is a contradiction ().

Therefore, t; = t,.

Ift; = t, = MAX_TIMESTAMP, this means e observes a value of MAX_TIMESTAMP before d
even sets s to MAX_TIMESTAMP due to (x). If this MAX_TIMESTAMP value is the initialized
value of s, it is a contradiction, as s must be non-MAX_TIMESTAMP at some point for
a dequeue such as d to enter its CAS sequence. If this MAX_TIMESTAMP value is set
by an enqueue, it is also a contradiction, as refreshEnqueue cannot set a slot to
MAX_TIMESTAMP. Therefore, this MAX_TIMESTAMP value is set by a dequeue d’. If d’ +
d then it is a contradiction, because between d’ and d, s must be set to be a non-
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MAX_TIMESTAMP value before d can be run, thus, e cannot have observed a value set by
d’. Therefore, d’ = d. But, this means e observes a value set by d, which violates our
assumption (x).

Therefore t; = t, = t’ # MAX_TIMESTAMP. e cannot observe the value ¢’ set by d due
to our assumption (). Suppose e observes the value ¢’ from s set by another enqueue/
dequeue call other than d.

If this “another call” is a dequeue d’ other than d, d’ precedes d. By Theorem A.5.2.2,
after each dequeue, the front element’s timestamp will be increasing, therefore, d’
must have set s to a timestamp smaller than ¢;. However, e observes t, = ;. This is a
contradiction.

Therefore, this “another call” is an enqueue e’ other than e and e’ precedes e. We know
that an enqueue only sets s to the timestamp it obtains.

Suppose €’ does not overlap with d, then e precedes d. e’ can only set s to t’ if €’
sees that the local SPSC has the front element as the element it enqueues. Due to

Theorem A.5.2.1, this means e’ must observe a local SPSC with only the element it
enqueues. Then, when d executes readFront, the item e’ enqueues must have been
dequeued out already, thus, d cannot set s to t’. This is a contradiction.

Therefore, e’ overlaps with d.

Because e’ and e cannot overlap, while d overlaps with both ¢’ and e, d must be the
first dequeue on s that overlaps with e. Combining with Theorem A.5.2.1 and the fact

that d executes the last successful slot-modification instruction on slot s within
e’s successful CAS-sequence, d must be the only dequeue that executes a successful
slot-modification instruction within e’s successful CAS-sequence.

During the start of e’s successful CAS-sequence till the end of d, spsc_readFront on
the local SPSC must return the same element, because:
 There’s no other enqueue running during this time.
+ There’s no dequeue other than d running.
» The spsc_dequeue of d must have completed before the start of e’s successful CAS
sequence, because a previous enqueuer e’ can see its effect.

Therefore, if we were to move the starting time of e’s successful CAS-sequence right
after d has ended, we still retain the output of the program because:
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+ The CAS sequence only reads two shared values: the rankth entry of Slots and
spsc_readFront(), but we have proven that these two values remain the same if
we were to move the starting time of e’s successful CAS-sequence this way.

« The CAS sequence does not modify any values except for the last CAS/store
instruction, and the ending time of the CAS sequence is still the same.

« The CAS sequence modifies the rankth entry of Slots at the CAS but the target
value is the same because inputs and shared values are the same in both cases.

We have proved that if we move e’s successful CAS-sequence to start after the last
successful slot-modification instruction on slot s within e’s successful CAS-
sequence, we still retain the program’s output.

If we apply the reordering for every enqueue, the theorem directly follows. O

Theorem A.5.2.6 (ABA safety) Assume that the 64-bit distributed counter never
overflows, Slotqueue is ABA-safe.

Proof This follows from Theorem A.5.2.5 and Theorem A.5.2.4. O

A.5.3 Memory reclamation

Notice that Slotqueue pushes the memory reclamation problem to the underlying
SPSC. If the underlying SPSC is memory-safe, Slotqueue is also memory-safe.

A.5.4 Linearizability

We assume all enqueues succeed in this section. Note that a failed enqueue only causes
the counter to increment, and does not change the queue state in any other ways.

Lemma A.5.4.7 Only the dequeuer and the enqueuer with rank r can concurrently
modify an SPSC and the slot at the r-th index in the Slots array.

Proof This lemma is trivial based on how the algorithm is defined. a

Lemma A.5.4.8 Each SPSC in Slotqueue contains elements with increasing time-
stamps.

Proof  Each enqueue would fetch-and-add the distributed counter and enqueue
into the local SPSC an item with the timestamp obtained from the counter. Applying
Lemma A.5.4.7, we know that items are enqueued one at a time into the SPSC.
Therefore, later items are enqueued by strictly later enqueues, which obtain increasing
timestamps. The lemma holds. d

Lemma A.5.4.9 If an enqueue e begins its slot-refresh phase at time ¢, and finishes
at time t;, there’s always at least one successful refresh_enqueue on rank(e) that
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does not execute its CAS sequence or one successful refresh_enqueue on rank(e) that
starts and ends its CAS sequence between ¢, and ¢; or one successful refresh_dequeue
on rank(e) that starts and ends its CAS sequence between ¢, and .

Proof If one of the two refresh_enqueues of e succeeds, then the lemma obviously
holds. Consider the case where both fail.

The first refresh_enqueue fails because it tries to execute its CAS sequence but there’s
another refresh_dequeue executing its slot modification instruction successfully
during the first refresh_enqueue’s CAS sequence.

The second refresh_enqueue fails because it tries to execute its CAS sequence
but there’s another refresh_dequeue executing its slot modification instruction
successfully during the second refresh_enqueue’s CAS sequence. This another
refresh_dequeue must start its CAS sequence after the end of the first successful
refresh_dequeue, which is after ¢,, because there is only one dequeuer, and must
end before ¢;, because its slot modification instruction takes places during the second
refresh_enqueue’s CAS sequence. In other words, this another refresh_dequeue
starts and successfully ends its CAS sequence between ¢, and ;. O

Lemma A.5.4.10 If an enqueue d begins its slot-refresh phase at time ¢, and finishes
at time t,, there’s always at least one one successful refresh_enqueue on rank(e) that
starts and ends its CAS sequence between ¢, and ¢; or one successful refresh_dequeue
on rank(e) that starts and ends its CAS sequence between ¢, and ¢,.

Proof Thislemma is similar to the above lemma. O

Lemma A.5.4.11 Given a rank r, if a successful enqueue e on r obtains the timestamp
c completes at ¢, and is still unmatched by ¢; > ¢, then slot(r,t) < c for any t €

[tO)tl]'

Proof Because the underlying SPSC queue is linearizable, take t" < t, to be the
time e’s spsc_enqueue completes successfully. Because e is still unmatched until ¢,,
the timestamp ¢ must be in the underlying SPSC at any time t € [t’, ¢,]. Therefore,
due to Lemma A.5.4.8, any spsc_readFront on rank r’s SPSC queue during [t’, ]
must read out a value not greater than c. Consequently, any successful refresh call
(refresh_enqueue or refresh_dequeue) during [t’, ;] must set the slot to some value
not greater than c. (1)

At some time after ¢’ and before ¢;, e must enter its slot-refresh phase. Due to
Lemma A.5.4.9, there must either be a successful refresh call during [t’,¢,] or the
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enqueue e’s refresh_enqueue itself must be successful without executing its CAS
sequence.

If there is a successful refresh call during [t’, ¢,]. From (1), slot(r,t) < ¢ for any t €
[t07 tl]‘

Suppose there is no successful refresh call during [t’, ¢]. Then, €’s refresh_enqueue is
successful without executing its CAS sequence. According to the code, this is because
there is another item in the queue while refresh_enqueue is executing. Therefore,
slot(r,ty) < c for some time t, € [t',t,]. Combined with (1), we have slot(r,t) < c
for any t € [ty,t].

In conclusion, the lemma holds. O

Theorem A.5.4.12 Any complete history h of Slotqueue does not have the VFresh
violation.

Proof Consider a complete history h. Suppose in h, there exists a dequeue event
that returns true at time ¢ but no enqueue event matches it at time ¢. For a dequeue
event to return true, its call to spsc_dequeue must return true. Because the SPSC is
linearizable, this dequeue must match some spsc_enqueue to this SPSC, which is called
by some enqueue. Therefore, this dequeue event must match some enqueue event, a
contradiction. The theorem holds. O

Theorem A.5.4.13 Any complete history h of Slotqueue does not have the VRepet
violation.

Proof Consider a complete history h. Suppose in h, there exists an enqueue event e
that matches two dequeue events d;, d, at some time ¢. This can only happen if d; and
d, both target the same SPSC as e. However, because the SPSC is linearizable, both calls
of d; and d, to spsc_dequeue must match different spsc_enqueue calls by different
enqueues. Therefore, this is a contradiction. The theorem holds. O

Theorem A.5.4.14 Any complete history h of Slotqueue does not have the vord
violation.

Proof Consider a complete history h. Suppose at some time ¢, there exist enqueue
events e, e, such that e; < e,, e, matches d, at time ¢ but e; is unmatched at time ¢.
h

Because e; < ey, e; obtains a timestamp smaller than e,.
h

If e; and e, target the same slot, due to the underlying SPSC being linearizable and
e ; €9, dy cannot match e, while e; is still unmatched.
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Note that d,’s slot-scan phase involves 2 scans.

Suppose e; targets the slot at a lower rank than e,’s slot. If d, finds e, in the first
scan, then in the second scan, because e; < e,, d, would have seen and prioritized e;’s
h

timestamp, which is a contradiction. Therefore, d, must have found e, in the second
scan. Suppose during the first scan, it finds e’ # e,. Then, e’’s timestamp is larger
than e,’s. Because during the second scan, e; is not chosen, its slot-refresh phase must
finish after e”’s, which already finishes in the first scan. Because e, ? €5, €5 must start

after e’ slot-refresh phase, so it must obtain a larger timestamp than e’, which is a
contradiction.

The theorem holds. O

Theorem A.5.4.15 Any complete history h of Slotqueue does not have the vwit
violation.

Proof Consider a complete history h. Suppose there exists a dequeue d starting at
time ¢ and returning false but there is an enqueue e that finishes before ¢ and is still
unmatched at ¢.

By Lemma A.5.4.11, some slot must contain a timestamp other than MAX_TIMESTAMP by
t. Therefore, when d performs the slot-scan phase in read_minimum_rank, it must see
this slot containing a non-MAX_TIMESTAMP and return a non-DUMMY_RANK. Consequently,
d cannot return false on line 10.

We claim that inside a dequeue, before the spsc_dequeue on line 11, if a slot
contains a non-MAX_TIMESTAMP, the corresponding SPSC cannot be empty. Consider
the successful slot refresh call with the last slot modification instruction targeted at
this slot before the spsc_dequeue on line 11. Because this slot refresh call sets the
slot to non-MAX_TIMESTAMP, its spsc_readFront must see that the SPSC is non-empty
(line 30). From the last refresh call to the current spsc_dequeue on line 11, no other
spsc_dequeue can happen, so this SPSC cannot be empty when line 11 is reached.
Therefore, it can never return false on line 12.

In conclusion, d cannot return false, a contradiction. The theorem holds. O
From the previous theorems, this theorem trivially holds.

Theorem A.5.4.16 Slotqueue is linearizable.
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A.5.5 Progress guarantee

Notice that every loop in Slotqueue is bounded, and no method have to wait for another.
Therefore, Slotqueue is wait-free.

A.5.6 Theoretical performance

A summary of the theoretical performance of Slotqueue is provided in Table 7, which
is already shown in Table 4. By R, we mean remote operations and by L we mean local

operations.
Operations Time-complexity
enqueue 4R + 3L
dequeue 3R+ 2nL

Table 7: Theoretical performance summary of Slotqueue. R means remote operations
and L means local operations.

For enqueue, we consider Procedure 21. Line 1 causes 1 truly remote operation, as the
distributed counter is hosted on the dequeuer. Line 2, as discussed in the theoretical
performance of SPSC, causes R + L operations. In the worst case, two refreshEnqueue
calls are executed. We then consider each refreshEnqueue call. Line 7 causes R + L
operations. Most of the time, Line 12 - Line 17 are not executed. Therefore, the two
refreshEnqueue calls cause at most 2R operations. So in total, 4R + 3L operations
are required.

For dequeue, we consider Procedure 23. Line 19 causes most of the remote operations:
The double scan of the Slots array causes about 2nL operations. We consider the
truly remote operations. Line 23 causes R + L operations. The double retry on Line 26
- Line 27 each causes L operation (Line 47) and R operation. So in total, 3R + 2nL
operations are required.
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